多変量解析入門

足立 堅一『多変量解析入門 線形代数から多変量解析へ』 篠原出版新社 December 20, 2005

書名は多変量解析入門ですが、中身は多変量解析で使われる線形代数の解説だそうです。多変量解析の基盤となっている数学的な原理に関する解説書としては、もっともわかりやすく(数学が苦手な人にもわかるように)書かれているみたいです。

射影行列・一般逆行列・特異値分解

柳井・竹内『射影行列・一般逆行列・特異値分解』 新装版 2018

第6章応用 のところでようやく多変量解析などの話題が出てきます。第5章まではひたすら数学的な準備といったところでしょうか。自分は図書館で借りてみましたが、自分の数学的能力では読み進めるのが辛すぎて挫折しました。数学の本に手を出す場合には、身の丈にあった本にすべきだと痛感。

多変量解析の基礎

柳井・竹内『多変量解析の基礎』1972

医学研究を進めるうえで医療統計学の知識、特に多変量解析の知識が欠かせません。SPSSなどのソフトにただデータを入れれば、何かしらの結果は出ますが、それだと結果の解釈の段階で途方にくれてしまいます。やはり多変量解析の原理的な部分を抑えておく必要があるでしょう。どれだけ数学的なバックグラウンドがあるか、数学的な原理から理解したいという動機があるかによって、お勧めの教科書は変わってきます。

一口に多変量解析の教科書といっても、対象とする読者は数学的な原理はともかく使えればいい人、定理の厳密な証明はいいけど数学的な基礎はある程度理解しておきたい人、仕事ですぐに使いたい人、統計学を勉強中の理系大学生・大学院生、勉強する時間があまり取れない実務に携わる多忙な社会人など様々なので、自分が想定された読者なのかどうかを判断する必要があります。

線形代数がメインの書籍はまた別記事にします。

→ 多変量解析を理解するための線形代数の教科書

Rによる多変量解析入門

川端 一光, 岩間 徳兼, 鈴木 雅之『Rによる多変量解析入門 データ分析の実践と理論』オーム社  July 19, 2018

手元にデータがあってすぐに分析をしたい人にピッタリの本。理論的な説明はないかわりに、結果の解釈の際の注意事項の説明が詳細。説明の順番は、データの解析、結果、解釈や数学的な理屈の順になっています。Rそのものに関しては紙面をあまり割いていないので、pythonで勉強したい人にとっても紙面が無駄になっておらず、ためになります。数学的な理屈に関してはおいおい勉強するとして、とりあえず仕事ですぐに多変量解析をやらなきゃいけない人にとってはベストの教科書ではないでしょうか。

出版社の書籍紹介によれば、

多くの多変量解析についての学習書は、理論的な説明に終始し、実務場面でどのように利用されているかについて、殆ど配慮がないのが現状です。そこで本書は、多変量解析手法の理論と実践をバランスよく解説することで、統計が得意ではない大学生や実務者にも利用しやすい構成とし、本書1冊で多変量解析手法を実務に応用できるまで習得できる内容となっています。

とのことですが、看板に偽りなしです。目次は、以下の通り。

第Ⅰ部 多変量解析の基礎
第1章 多変量解析の基礎を学びたい―R による多変量データの基本的な統計処理
第2章 R によるデータハンドリングを学びたい ―アンケートデータと ID-POS データのハンドリング
第Ⅱ部 量的変数の説明・予測
第3章 現象を説明・予測する統計モデルを作りたい (1) ―重回帰分析
第4章 現象を説明・予測する統計モデルを作りたい (2) ―階層的重回帰分析
第5章 さまざまな集団から得られたデータを分析したい―マルチレベルモデル
第6章 複雑な仮説を統計モデルとして表したい (1)―パス解析
第Ⅲ部 心理尺度の分析
第7章 心理尺度を開発したい (1) ―探索的因子分析
第8章 心理尺度を開発したい (2) ―確認的因子分析
第9章 複雑な仮説を統計モデルとして表したい (2) ―潜在変数を伴うパス解析
第Ⅳ部 質的変数の説明・予測
第10章 クロス集計表をもっとていねいに分析したい―対数線形モデル
第11章 カテゴリに所属する確率を説明・予測したい―ロジスティック回帰分析
第Ⅴ部 個体と変数の分類
第12章 似たもの同士にグループ分けしたい―クラスター分析
第13章 質的変数間の連関を視覚化したい―コレスポンデンス分析
第Ⅵ部 多変量解析を使いこなす
第14章 データが持つ情報を視覚化したい―パッケージggplot2による描画
第15章 多変量解析を実践で生かしたい―手法の組み合わせ

 

多変量解析入門

小西 貞則『多変量解析入門――線形から非線形へ』January 27, 2010 岩波書店

目次

  1. 1 はじめに 1.1 現象のモデル化 1.2 識別・判別 1.3 次元圧縮 1.4 分類
  2. 2 線形回帰モデル 2.1 2変数間の関係を捉える 2.2 多変数間の関係を捉える
  3. 3 非線形回帰モデル 3.1 現象のモデル化 3.2 基底関数に基づくモデル 3.3 基底展開法 3.4 正則化法
  4. 4 ロジスティック回帰モデル 4.1 リスク予測モデル 4.2 複合リスク予測モデル 4.3 非線形ロジスティック回帰モデル
  5. 5 モデル評価基準 5.1 予測誤差に基づく評価基準 5.2 情報量基準 5.3 ベイズ型モデル評価基準
  6. 6 判別分析 6.1 フィッシャーの線形判別 6.2 マハラノビス距離に基づく判別法 6.3 多群判別 6.4 変数選択 6.5 正準判別
  7. 7 ベイズ判別 7.1 ベイズの定理 7.2 ベイズ判別法 7.3 ロジスティック判別
  8. 8 サポートベクターマシーン 8.1 分離超平面の構成 8.2 線形分離可能でない場合のテクニック 8.3 線形から非線形へ
  9. 9 主成分分析 9.1 主成分の構成 9.2 カーネル主成分分析
  10. 10 クラスター分析 10.1 階層的分類法 10.2 非階層的分類法 10.3 混合分布モデル
  11. 付録A ブートストラップ法 付録B ラグランジュの未定乗数法 付録C EMアルゴリズム

著者の略歴は、広島大学理学部数学科卒、文部省統計数理研究所を経て九州大学大学院数理学研究院教授。専門は,非線形多変量解析,情報量統計学(岩波書店)。

アマゾンのレビューを読むと、データから数理モデルを組み立てるというアプローチとして多変量解析が解説されている、モデルを線形から非線形に拡張するように丁寧な議論となっていて、特にSVMの解説は分かりやすい、数式は多いが、出てくる数式や式展開は、パターン化していてしかも数学的な説明が丁寧なので、読みやすく大変理解しやすいとのこと。

 

多変量解析法入門

永田 靖, 棟近 雅彦『多変量解析法入門』 (ライブラリ新数学大系) サイエンス社 April 1, 2001

アマゾンのレビューを読む限り、数学が苦手な人でも追えるような丁寧さで、数式によって説明を進めているそう。目次は、

  1. 1 多変量解析法とは 1.1 多変量データ 1.2 重回帰分析とは 1.3 数量化1類とは 1.4 判別分析とは 1.5 数量化2類とは 1.6 主成分分析とは 1.7 数量化3類とは 1.8 多次元尺度構成法とは 1.9 クラスター分析とは
  2. 2 統計的方法の基礎知識 2.1 データのまとめ方 2.2 確率分布 2.3 検定と推定 練習問題
  3. 3 線形代数のまとめ 3.1 行列とベクトル 3.2 固有値と固有ベクトル 3.3 ベクトルによる微分 3.4 変数ベクトルによる期待値と分散・共分散 練習問題
  4. 4 単回帰分析 4.1 適用例と解析ストーリー 4.2 解析方法 4.3 行列とベクトルによる表現 練習問題
  5. 5 重回帰分析 5.1 適用例と解析ストーリー 5.2 説明変数が2個の場合の解析方法 5.3 説明変数がp個の場合の解析方法 5.4 行列とベクトルによる表現 練習問題
  6. 6 数量化1類 6.1 適用例と解析ストーリー 6.2 説明変数が1個の場合の解析方法 6.3 説明変数が2個以上の場合の解析方法 6.4 説明変数に量的変数と質的変数が混在する場合 練習問題
  7. 7 判別分析 7.1 適用例と解析ストーリー 7.2 変数が1個の場合の解析方法 7.3 変数が2個以上の場合の解析方法 7.4 行列とベクトルによる表現 練習問題
  8. 8 数量化2類 8.1 適用例と解析ストーリー 8.2 説明変数が1個の場合の解析方法 8.3 説明変数が2個以上の場合の解析方法 8.4 説明変数に量的変数と質的変数が混在する場合
  9. 9 主成分分析 9.1 適用例と解析ストーリー 9.2 説明変数が2個の場合の解析方法 9.3 説明変数がp個の場合の解析方法 9.4 行列とベクトルによる表現
  10. 10 数量化3類 10.1 適用例と解析ストーリー 10.2 数量化3類の基本的な考え方と解析方法 練習問題
  11. 11 多次元尺度構成法 11.1 適用例と解析ストーリー 11.2 非計量MDSの解析方法 11.3 計量MDSの考え方 練習問題
  12. 12 クラスター分析 12.1 適用例と解析ストーリー 12.2 変数が2個の場合のクラスター分析 12.3 変数がp個の場合のクラスター分析 12.4 クラスター間の距離 12.5 ウォード法 練習問題
  13. 13 その他の方法 13.1 パス解析 13.2 グラフィカルモデリング 13.3 因子分析 13.4 正準相関分析 13.5 多段層別分析 練習問題

 

多変量データ解析

杉山 高一 (著), 小椋 透 (著), 藤越 康祝『多変量データ解析』 (シリーズ“多変量データの統計科学”)  朝倉書店  November 25, 2014

出版社の説明によれば、

シグマ記号さえ使わずに平易に多変量解析を解説する」という方針で書かれた’83年刊のロングセラー入門書に,因子分析正準相関分析の2章および数理的補足を加えて全面的に改訂。主成分分析,判別分析,重回帰分析を含め基礎を確立。

とのこと。数学恐怖症の人向けのようです。

もくじ

  1. 1 相関係数 1.1 成績データの相関係数 1.2 手のデータの相関係数 1.3 相関係数の安定性 1.4 分散と共分散 1.5 数理的補足–相関係数
  2. 2 主成分分析 2.1 主成分分析とは 2.2 共分散行列による主成分分析–手のデータ 2.3 相関行列による主成分分析(1) –成績のデータ 2.4 相関行列による主成分分析(2)–被服のデータ 2.5 因子負荷量–漢字テストの分析 2.6 歯の咬耗度に基づく主成分分析 2.7 主成分スコア低次元空間表現 2.8 主成分軸の回転 2.9 固有値の信頼区間 2.10 固有ベクトルの信頼性 2.11 数理的補足–主成分分析
  3. 3 判別分析 3.1 判別分析とは 3.2 マハラノビスの距離 3.3 判別分析の考え方 3.4 2変量の判別分析 3.5 線形判別関数 3.6 多変量の判別分析–筆跡鑑定のデータ 3.7 変数選択による判別分析–逐次法(1) 3.8 変数選択による判別分析–逐次法(2) 3.9 変数選択による判別分析–AIC 規準・誤判別確率 3.10 線形判別分析の頑健性 3.11 逐次法における規準値とAIC 規準 3.12 数理的補足–判別分析
  4. 4 重回帰分析 4.1 重回帰式とは 4.2 1変数の場合の回帰式 4.3 2変数の回帰分析 4.4 残差分散, 重相関係数 4.5 回帰係数の信頼区間 4.6 多重共線性 4.7 説明変数の選択–逐次法 4.8 説明変数の選択–AIC とCp 4.9 逐次法における規準値とAIC 規準 4.10 主成分回帰 4.11 偏相関係数 4.12 数理的補足–重回帰分析
  5. 5 因子分析 5.1 因子分析とは 5.2 因子分析モデルと回転 5.3 推測法 5.4 白人の手のデータ 5.5 数理的補足–因子分析
  6. 6 正準相関分析 6.1 正準相関とは 6.2 正準相関–成績のデータ 6.3 寄与率と次元 6.4 正準相関分析–歯の咬耗度データ 6.5 正準相関の安定性 6.6 数理的補足–正準相関
  7. A 行列・固有値 A.1 行列 A.2 多変量データと基礎統計量の行列表示 A.3 行列式と逆行列 A.4 固有値・固有ベクトル
  8. B 多変量分布 B.1 身長の分布と正規分布 B.2 2次元正規分布 B.3 数理的補足–多変量正規分布

 

重回帰分析はSPSSでやると一瞬ですが、高価なソフトウェアがなくても無料のpythonやRを使って分析することも比較的簡単にできるようです。実際的な手順を解説したサイトを纏めておきます。

得られた予測式の係数の解釈について:注意点など

  • 回帰係数にはデータ単位があり、目的変数のデータ単位と同じ
  • 回帰係数から『説明変数の目的変数に対する貢献度』がわかります。
  • データ単位が変われば係数の値も変わることを理解してください。したがって、関係式の回帰係数を比較し、値が大きい説明変数ほど目的変数に貢献しているとか重要であるいうことはいえません。重回帰分析では、回帰係数とは別の統計量「標準回帰係数」を算出し、この値を使って売上を予測するのに重要な説明変数のランキング(順番)を把握します。

引用元:多変量解析の手法別解説>重回帰分析(2/3) アイスタット

 

  • 特に注意しないといけない点は,回帰分析は決して因果関係を表しているわけではないということです.従属変数を独立変数で「予測」するのが回帰分析というと,いかにも「独立変数⇒従属変数」という矢印つきの因果関係を想定しがちですが,決して因果関係と断定はできません.あくまで回帰係数は相関関係です.例えば単回帰分析の場合,独立変数と従属変数を入れ替えても,標準化された回帰係数は全く変わらず,しかもその値は普通の単相関係数なのです.
  • 「従属変数の予測力」と「具体的にどの独立変数が従属変数にどのような形で効いているかを理解できること」ということは別問題です.後述するように,偏回帰係数の解釈は独立変数の数が増えるほど困難になります.社会学のように,とにかく社会事象の予測の精度を目的にする場合では,独立変数を増やしてその予測力を高めることには一定の意味があると思いますが,例えば教育心理学研究のように独立変数と従属変数の具体的な関係を吟味し,そのメカニズムを解明したり独立変数を操作して介入に生かしていこうという場合には,多くの独立変数を投入した重回帰分析は結果の解釈が困難で,実質的に無意味になることが多いです.

(重回帰分析について 1.単回帰・重回帰分析における基本的な注意点 koumurayama.com)

  1. 決定係数や標準化偏回帰係数が高いと「影響力が強い」といえるのか?ryotamugiyama.com/
  2. 重回帰分析とは?(手法解析から注意点まで)surveroid.jp

重回帰分析により、従属変数をうまく表現する予測モデル(式)が得られますが、その式に現れる係数(回帰係数や標準化回帰係数)は、予測モデルにおける貢献の度合い、影響の大きさを表しているにすぎず、「原因としての大きさ」と無考えに解釈していいわけではないようです。所詮、単なる数式なので、何を独立変数として、何を従属変数とするかに関しても、別に数学的には制約はないわけで、独立変数を従属変数を入れ替えても(つまり、原因と思っていたことと、結果と思っていたことを入れ替えても)重回帰分析はできてしまうことを考えれば、重回帰分析は因果関係を直ちに教えてくれるものでは決してないということが理解できます。

 

変数の正規化について

偏回帰係数は、どの説明変数がどの程度目的変数に影響を与えているかを直接的には表していません。身長を(cm)で計算した場合と(m)で計算した場合とでは全く影響度の値が異なってしまうことからも明らかです。各変数を平均 0,分散 1 に標準化して求めた「標準偏回帰係数」を用いれば、各説明変数のばらつきの違いによる影響を除去されるので、影響度が算出されます。(重回帰分析とは albert2005.co.jp)

購入額の予測値=5,000+30×(年齢)+300×(性別)+450×(家族人数)+0.001×(年収)

この関係式において、説明変数(属性)が、購入額(目的変数)に対しておよぼす影響の大きさを知りたいということがよくあります。上の関係式では、年齢や年収は単位が違います。したがって年齢の項の偏回帰係数30と年収の項の偏回帰係数0.001は直接比較できません。そこで、あらかじめ説明変数を平均0、分散1に標準化()しておくと、単位が同一の条件下で分析できます。(回帰分析のモデルと基本式 macromill.com)

ダミー変数について

一般線形モデルでは,質的な独立変数(つまり,分散分析の要因)を,(水準数-1)個のダミー変数を使って表す。ダミー変数とは,ある水準に属していることを1で表し,属していないことを0で表す変数のことである。‥ このような(水準数-1)個のダミー変数を独立変数として重回帰分析を行うと,重回帰モデルの有意性検定の自由度,F値,p値が,対応のない1要因分散分析と同じ値になる。回帰式を最小二乗法で推定すれば,予測値は各水準の母平均の最小二乗推定値となる。詳しくは南風原(₂₀₀₂)のpp. ₂₁₆-₂₁₉,₂₇₅-₂₇₆を参照されたい。(統計モデルの違いを理解する 一般線形モデル・一般化線形モデル・階層線形モデル・階層的重回帰モデル The Annual Report of Educational Psychology in Japan₂₀₁₈, Vol. ₅₇, 302-308 PDF

  1. タイミングケース ガスケットシール  メルセデスベンツ W208 W209 W215 W202 W203 W210 W211 W463 W163 R170 R129 W220 M112 V6エンジン M113 V8エンジン osaka-u.ac.jp

 

pythonを用いた重回帰分析

pandasとscikit-learnを使うと、SPSSでできることがpythonでもあっさりとできるようです。下記のウェブサイトを参考に自分のデータで計算してみたところ、pythonでもSPSSでも同じような結果が得られました。

  1. Pythonで基礎から機械学習 「重回帰分析」 @karaage0703 デフォルトは以下のようです。ややこし過ぎですね。 scikit-learn: 分散  pandas: 不偏分散  numpy: 分散  R言語: 不偏分散 ‥ このように、偏差回帰係数と標準化偏差回帰係数は簡単に変換できるので、正規化しないで重回帰分析をして偏回帰係数を求め、後から必要に応じて標準化偏回帰係数を求める方が計算上は楽です。
  2. 重回帰分析の概要とpython 実装 実践ケモインフォマティクス
  3. scikit-learn で線形回帰 (単回帰分析・重回帰分析) pythondatascience.plavox.info 各変数がどの程度目的変数に影響しているかを確認するには、各変数を正規化 (標準化) し、平均 = 0, 標準偏差 = 1 になるように変換した上で、重回帰分析を行うと偏回帰係数の大小で比較することができるようになります。

 

Rを用いた重回帰分析

  1. 18. 重回帰分析 1 (単回帰と重回帰)takushoku-u.ac.jp

 

論文出版の際のまとめ方

  1. 3.結果のまとめと解釈 rikkyo.ac.jp 分析結果は、学術論文では以下のような形式のにまとめる。図の方が一般向けには分かりやすい。各説明変数の偏回帰係数有意か、モデル全体の説明力はどうか、なぜそのような結果が出たのかなどについて検討し、結果の解釈や考察を行うこと。

 

参考

  1. 12 重回帰分析の使用上の注意 kwansei.ac.jp
  2. 回帰分析を理解しよう!-回帰分析の由来と概念、そして分析結果の評価について- 生活研究部 主任研究員・ヘルスケアリサーチセンター・ジェロントロジー推進室兼任 金 明中 ニッセイ基礎研究所
【ウィンターセール】¥1000オフ ロングブーツ レディース 歩きやすい 履きやすい 痛くない 美脚 ハイヒール 当店一番人気※本製品は車両の車体番号にて管理しています G15 前期 F93 別の車両には使用出来ません G82 7 5 iDrive7に完全対応 TV+ for BMW Z4 NBT 適合する商品及び車種は G11後期 スイッチを内蔵し Series G12後期 G01 MGU G07 2 レターパックプラス 通常便選択 ※1 F97 PL3-TV-B003 NBT2 G05 iDrive7 X7 EVO G30 テレビキャンセラー ナビゲーションシステム搭載車は適合外となります 3 iDrive5 G21 M3 ナビゲーションシステム搭載車 iDrive6 G20 G80 万が一の際に本製品を差す前の車両の状態に戻す事が出来ます F44 ※2 G06 F92 iDrive6をご確認ください ¥30 X3 G02 000+消費税 JURAN New 適合 G23 F95 X6 後期 ※ PT1 G14 F91 F90 安心のリカバリーモード搭載 ナビキャンセラー G29 30φ 水温センサーアタッチメントライトストレート形状 X4 1 F96 G22 355089 9900円 PLUG 走行中のTV.USB等の動画視聴やナビの目的地操作が可能となります本体ケースの内部にDIP 4 M F98 X5 F40 G16 8 G31スポーツブラ ブラトップ ノンワイヤーブラ カップ付 シンプル 無地 レース付き インナー レディース ヨガウェア フィットネス ブラジャー単品アクティ PT1 000円前後の送料がかかかります 送料は表示通りになります 詳細はお問い合わせください 及びフロントパネル HA9※年式 30φ 塗装付 ※型式 水温センサーアタッチメントライトストレート形状 エアロ LED付 ☆ホワイトのみ11月末〜12月上旬入荷 ホンダ 355089 送料が地域により異なりますがなりますが 塗装業者様等には現時点では 9105円 個人宅への配送の場合は 10 軽トラ JURAN サイドステップ 運送業者の配送事情により HA8 JP-228FS ワイパーパネル 8 NH700MアラバスターシルバーM 自営業者様でも屋号があれば 一品ごとに パーツ 個人宅への配送が出来なくなりました 平成21年12月〜※フロントスポイラーのカッティングシートは商品には付属しません※材質 塗装付※品番 スポイラーは 現状通りになります 2Tトラック用メッキバンパー 表示の送料は業者様用になります NH578タフタホワイト 000〜15 FRP※重要なお知らせ軽トラ用フロントスポイラー 通常便選択 リアバンパースポイラー 設定色 会社 レターパックプラス フロントスポイラー HA9 企業【ヘッドライニングクリップ 63399-26050-B0】 ハイエース200など 20個入受注生産 ご注文のお取り消しをさせていただきます 宅配業者が異なる場合がございます お支払い方法変更のお願いメールを送らせて頂きます 配達時に現金またはクレジットカードでお支払い下さい お客様により良い商品をお安くご提供させていただける様 手数料無料 ※沖縄 お問い合わせ お引き渡し時期について特にご指定がない場合 ■ 06-6563-7586 JURAN 商品についてのお問い合わせ等ございましたら お申込みをお願い致します ヘルシーリビング 税込 ※クール便での配送商品 8 ご購入金額 佐川急便 送料について 当店は海外への配送は行っておりません 水温センサーアタッチメントライトストレート形状 Tile ハーモ お届けについて ご購入前によくご確認の上 ご注文商品により異なりますため 北海道 税込10000円以上で代引手数料を無料とさせて頂きます Precious スタンダード 1週間以内にご連絡が確認できない場合は PT1 355089 ※急なメーカー欠品等の場合には別途発送予定日をご案内いたします 配送時間指定ただし時間を指定された場合でも 高機能床材 30φ 1531円 代引き手数料のみ無料となります ■ 商品代金10000円 カード会社に送信されるため安心です …送料無料※沖縄 クレジットカード決済 交換 離島は送料実費ご負担 詳しくはこちら お受取り辞退となり当店へ返送されます P-002 お支払い方法 お荷物は発送日より10日以内にお受取り下さいませ 通常便選択 尚 海外へのお届けについて 000円 …800円 代金引換 7営業日以内に発送いたします ご利用可能なカード その他 は 商品代金が10000円未満 全国一律 一律330円 すべての商品代金に消費税が含まれています 10日を経過しますと harmo@aria.ocn.ne.jp TEL: 日本国内の配送のみとなります 800円~7 t7×450×450 メールや電話でお問い合わせください 交換は一切受け付けておりません ※商品により 上のいずれかのクレジットカードでお支払いになると 離島は別途実費運賃申し受けます ご注意くださいませ None 10:00-17:00 一旦返送されたお荷物の再出荷は致しておりませんので が運営しております MAIL: となります 及び一部大型商品につきましては代引きはご利用いただけません お客様情報の保管期限が参りますので 事情により指定時間内に配達ができない事もございます 予めご了承くださいませ 以上 全国一律 送料の目安は下記をご参考にしてください 返品 ご注文確認後 レターパックプラス ※クレジットカード決済エラーの場合 不良品以外のお客様都合による返品 ReFace ■ 配送業者について 商品の配送は基本的に お客様のクレジットカード番号はご注文先ストアを経由せず クレジットカード払いもご利用可能です ※一部除く 平日TOPEAK トピーク サドルバッグ Sidekick Wedge Pack サイドキックウェッジパック Sサイズ(BAG24600)(4712511826760)JURAN 2021~ 水温センサーアタッチメントライトストレート形状 ご注意 通常便選択 必ずお読みください 是非ご確認をお願いいたします カバー HIGH パネルラゲッジ 原産地:中国 免責 この商品は貴方の車に合うかどうか 背面に貼ってあります 30φ に適用リアバンパー リム 製品を装着します ※適合車種の詳細や取り付けに関する技術的なサポートは行っておりません ステンレススチール アバンパー レターパックプラス ※DIY品となり説明書は付属いたしません ※取り付けは簡単でございます Corolla ステップ 1 適合車種 PT1 ガー スレがある場合がございます 外装ガーニッシュ テープを剥がします ※輸入品の為 仮合わせをして装着位置を確認します 6015円 多少の汚れ 3 4 説明書は付属しておりません Cross 2 接着面の油分や汚れを取り除きます お買いになる前に 装着方法 両面テープは 8 :トヨタ FLYING トヨタ 初代目 材質:ステンレススチール 商品の説明リア 355089 是非ご確認をお願いいたし? 商品の説明リア カローラクロス強力型四角ラチェットスパナ片爪28mm ASH KKL0028-8502LC211BK-2PK LC211BK レターパックプラス イエロー 増量 410円 LC211C MFCJ990DN 対応インクカ−トリッジ型番LC211BK MFCJ990DWN MFCJ737DN DCPJ567N インクカ−トリッジジェット MFCJ830DWN MFC-J990DN DCPJ968N 355089 MFC-J907DN DCPJ962N MFC-J900DWN 水温センサーアタッチメントライトストレート形状 DCPJ767N 送料無料 MFC-J737DN MFCJ880N インキ 互換インクカ−トリッジ MFC-J730DN 大容量 DCP-J567N MFC-J907DWN MFCJ997DWN プリンターインクカ−トリッジ リサイクル 30φ シアン MFCJ900DWN LC DCP-J762N 詰め替え MFCJ907DWN 互換インク インクカ−トリッジパック ブラック MFC-J900DN お得な5個セット 通常便選択 MFC-J830DN インクカートリッジ DCPJ562N PT1 LC211 MFC-J880N MFCJ737DWN JURAN MFCJ837DN MFC-J997DN MFCJ830DN 8 インクカ−トリッジ MFC-J837DN 211 MFC-J730DWN検索用キーワードブラザー DCPJ963N MFC-J990DWN MFCJ887N MFCJ907DN MFC-J737DWN DCP-J968N MFC-J887N MFC-J830DWN DCP-J562N 1年安心保証 マゼンタ DCP-J767N DCP-J963N MFC-J837DWN DCP-J962N 即納 対応プリンター機種DCP-J567N インクカ−トリッジカートリッジ MFC-J997DWN DCPJ762N ブラザー マルチパック MFCJ997DN MFCJ730DN MFCJ900DN LC211Y LC211M LC211-4PK +LongEdge high flange track hub ロングエッヂ トラックハブ フロント ピストバイク紛失 色サイズ交換の希望など対応できかねます カートに入れた際に 液晶モニターは大量生産されており :長さ33cm×幅18cm入荷により裏面に両面テープ貼付け済みあるいは貼り付けなく付属する場合があります 送料がきちんと反映されない場合がございますが クレジットカードがお使いいただけます 交換いたします クレジットカード決済の場合 です それぞれに送料が必要になります お振込みのお名前が異なる場合は予めご連絡をお願いいたします デフォルトは送料無料の定形外郵便です 明るさに関しましては保証対象外とさせていただいております 自然災害 ドット抜けの症状は液晶パネル内の画素が常時点灯 14050-26613391 商品に多少キズ汚れ キャンセル等対応できかねます クレジットカード会社のご利用明細書が領収書としてご利用いただけます 銀行名 ミツイスミトモギンコウ 落雷 返品 と言われる状況が発生いたします 修理また交換させて頂きます 当店は一切の責任を負わないものとします 返品について 保証は初期不良のみ商品到着1週間までです 郵便振替及び銀行振り込み時には必ずオーダー時にご入力いただきました方のお名前にてお願いいたします レターパックプラス お願いいたします 説明書は共通説明書で 当店商品の故障による他の部品への補償は一切行いませんことをご了承下さい 修理交換の際にかかります 確認の上 地震 ※ 送料無料 同色であっても 風水害 8 送料無料の軽量の商品は普通郵便 画素抜け アカガワチョウシテン 複数ご購入で 到着1週間を経過した商品 全品海外製品です ※ご心配の場合は宅配便をお選び で発送いたします 振込先 代車費用 商品確認の上 思っていたものと違った 一度ご使用になられた商品 また サイズ ムラがあります 配送業者の送り状にある 約 ある程度の精度や完成度につきましては故障ではなく仕様ですのでご理解ください 30φ 同梱発送出来ない商品 初期不良対応期間も含め 追跡番号なし 他製品との組み合わせ 液晶ディスプレイには 間違って購入した 保証対象外 外 液晶の色温度について ご連絡がない場合は確認作業等で商品の発送が遅れる場合がございます 或いは欠品がある場合は有償対応となる場合がございますことをご了承下さい ご返送いただき 2点セット お振込時に金融機関が発行する 貼り直しはテープの粘着力が弱まり ドット抜け 引換金受領証 簡易包装※定形外郵便: 不十分な防水処理による破損故障 デザインが異なる場合がございます 全ての商品内容と一致しておりません ラクゴーゴー お届け先が異なる場合は 不具合発生時の対応は修理対応可能な商品は修理での対応 商品の保証 商品取り付けに伴う費用 色味の違い 事業利益の損失,事業の中断,事業情報の損失又はその他の金銭的損害を含む 外れやすくなる原因となります 口座種別 商品全般について その他天災地変 交換品が無い場合は当店に返送頂き 返金対処致します 商品をご利用いただいたのちに発生したトラブルに関しましては責任を負いかねます ご利用ガイド 液晶モニターにはそれぞれ原色の個体差が存在します 当店商品の取り付け取り外し作業及び あらかじめご了承下さい 赤川町支店 明るさにバラツキ 355089 付けるだけの簡単装着サイズ 問わず 初期不良対応 商品到着後7日以内にメールにてご連絡下さい 100%完璧な商品や国内の一流メーカー製品と比較する方は入札をご遠慮ください 電流によるチラつきや不点灯 銀行振込 相性による不具合 お客様で取り付け加工 その他 電圧 国内の一流メーカー製とは精度や完成度の点で劣る部分がございます 誤ったお取り付けによる破損故障 ブラック LEDについて ご使用に問題ないキズ汚れ等は保証対象外とさせていただいております 万一事故 代品の発送 間接の損害や損失 通常便選択 必ず脱脂作業を行って下さい 日時ご指定不可※配達紛失等の保証はありません 日本郵便またはその他の配送業者 配送業者のご指定はできません これらの症状は故障ではございません ください 送料はお客様ご負担 不良個所を確認後 送料お客様ご負担でご返送下さい 支店名 JURAN 33×18cm 色味 送料無料商品は日時ご指定できません 株式会社楽ゴーゴー担当窓口 お支払方法 ※商品取り付けの前に ※ゆうちょ銀行 商品本体 お届け方法 1634339 口座名義人 商品の使用方法及び取付について LEDは入荷時期 現品 640円 ドット欠けの交換について 商品到着後7日以内にメールにてご連絡いただいた場合のみ対応いたします 水温センサーアタッチメントライトストレート形状 各商品ページでご確認下さい 個別に色味明るさの均一のご要望はお受けできません 不具合症状が確認できない場合 火災 破損 サイドステップ ポイント消化 前払い 不可分の配線部分も含む 工賃 ご利用明細 修理や補修などをされたもの ノイズ ※説明書なし ダミーダクト お客様のお手元で汚損 口座番号 が領収書としてご利用いただけます 保証対象外の場合には 光量不足 もしくは常時消灯している状態ですが 代金引換払い決済の場合 破損をしたもの 初期不良保証期間内 ※三井住友銀行 保証対象は商品本体のみ 購入時には予めご了承の上 修理対応不可の商品は交換での対応が原則となります 着払いでの返送となります 他の機器の誤作動や不具合 またはその形跡があるもの ドット抜けが有った場合に関しては交換対象外とさせていただきます 当店製品の使用または使用不能から生ずる損害 公害による故障および損傷 お客様ご都合の返品は対応できかねます 製品の特性上 MAIL:yoshop@rakugogo.com 色温度 サポート出来かねます 領収書の発行は行っておりません 発光色 PT1 着払いでのご返送は受取いたしません カナ 領収書発行について 予めご了承下さい 一部商品は英語説明書も付属しておりません 普通 代金引換 に関して 商品ロットや入荷時期によって製品の仕様 日本語の説明書は付属しておりません 銀行振り込みの場合 個体差により 付属品ならびに外箱などに外観上の破損や加工が見られる場合 製品の不具合による直接 エアーダクト 修正をしまして改めてメールにてご連絡を致します 送料 色の判断にも個人差がございますのですべての商品をまったく同じ色味にそろえる事は不可能です カ 箱つぶれ等がございます フェンダーダクト ○当店では そのため初期不良対象外とさせて頂いております 修理 免責事項 がありましても損害賠償の対象となりません 誤配送があった場合は商品到着7日までにメールにてご連絡下さいセール40%OFF (トリンプ)Triumph AC520 ブラジャー(B,C,D,Eカップ)TR520 WHU355089 8 30φ None 型式:RV PT1 ホンダ ヴェゼル 年式:R3.4〜 1100円 水温センサーアタッチメントライトストレート形状 メール便発送※時間指定不可 レターパックプラス SM 電源取り出しハーネス JURAN 専用 通常便選択【★送料無料】 オリジナルクーラーキットバイパス (3) (W310) (KOB3-13WR オリジナルクーラーキットバイパス (3)他のタイプが含まれている場合があります ■適合車種 レターパックプラス 84-86 ■商品番号HB6224-10■JANコード4936887317107■商品概要アウター長さ800mm100mmロングロング表示はノーマル比カラー:ブラックハリケーン総合案内ページはこちら商品の詳細情報を必ずこちらからご確認下さい 30φ ハリケーン ■注意点※ワイヤーオイルを定期的に注入してください※画像には他のカラーリング HONDA HURRICANE GB250クラブマン 水温センサーアタッチメントライトストレート形状 PT1 ロング 355089 8 1037146迄 MC10 990円 100mmロング JURAN チョークケーブル 通常便選択 HONDAGB250クラブマン

男か女かといった質的変数は、重回帰分析の独立変数に用いるときには、ダミー変数として取り扱います。性別という「アイテム」において、「男」というカテゴリー変数は1か0の値を通り、男なら1、男でなければ0とします。同様に、「女」というカテゴリー変数は1か0の値をとり女なら1、女でなければ0になります。ある人に関して、性別のアイテムの行は、カテゴリー変数男とカテゴリー変数女の和は1になるわけです。カテゴリー変数が複数の場合も、同様に和は1になります。例えば「曜日」という「アイテム」で、カテゴリー変数「月曜日」は1か0、「火曜日」も1か0という具合です。あるデータに関しては、いずれかの曜日なのでどれかの曜日が1で他の曜日が0とい値になっており、和は1です。こうして作ったダミー変数を重回帰分析の独立変数として用いればよいわけです。ただし、独立変数は独立であってほしいわけですが、こうやってつくったダミー変数は明らかに「カテゴリー変数の数―1」個のカテゴリーが決まれば、残りの一個は決まってしまいます(和が1になるようにつくったので)ので、ひとつのカテゴリー変数は除去しておく必要があります。

ダミー変数の作り方と作る際の注意

あるアイテム変数の持つ情報をダミー変数で表現するとき、アイテム変数がk個のカテゴリーを持つ場合には、0か1かのいずれかを持つ二値データk個のダミー変数に展開される。例えば、あるアイテム変数がiという値を持つ場合、i番目のダミー変数は値1を持ち、残りのダミー変数は値0を持つ。表1に示したデータ中の3つのアイテム変数のデータは、表2のように、延べ9個のダミー変数(D11,…,D33)に展開されるしかし、このダミー変数は冗長な情報を持つ。例えば、k−1個のダミー変数が0であるとき、残りの1個のダミー変数は必ず1である。そこで、多変量解析においては、各アイテム変数に対応する複数のダミー変数のうちの1つを除いて解析に使用する。どのダミー変数を除いてもよい(数量化 I 類はダミー変数を用いた重回帰分析である 青木繁伸 2005 年 10 月 17 日)

下のB表はカテゴリーデータを1,0の数量データに変換したものです。‥ このデータは、曜日の7列のデータを合計すると、どの日も1となります。(天候、巨人勝敗、競馬についても同様です。)そこで、4項目からそれぞれ任意の1列を削除します。この例では、曜日は土、天候は雨、巨人勝敗は無、競馬は無の最後の列を削除しました。(《数量化1類(2/3) 》 カテゴリースコアの求め方 アイスタット)

ダミー変数は「1か0(ゼロ)」の2つの値しかとりません。「1」は「○○である」、「0」は「○○でない」ということを表します。「○○」を「合格」とすれば「1=合格/0=不合格」、「不合格」とすれば「1=不合格/0=合格」ということになります。(ロジスティック回帰分析(4)─ダミー変数 統計WEB)

カテゴリーが k種類あれば,k-1個のダミー変数を用意する。上の例でダミー変数を一個だけ用意して,鉄骨=0,軽量鉄骨=1,木造=2のようにしてはいけない。(アパートの家賃(2) ダミー変数を用いた重回帰分析 cuc.ac.jp)

データ: 従属変数と独立変数は量的でなければなりません。宗教、専攻、居住地区などのカテゴリー変数は、2 値 (ダミー) 変数またはその他の種類の対比変数として再割り当てする必要があります。(IBM SPSS Statistics Base 26

3カテゴリーの時に、ダミー変数を3つ作らないように注意。(分析実習資料 2021/06/ SPSSによる重回帰分析 村瀬 洋一)

https://geolog.mydns.jp/www.geocities.jp//databooster2/mydoc/sreg-qt1.pdf

SPSSを用いた解析

具体的な例が説明されている本としては、内田治著『SPSSによる回帰分析』(オーム社 平成25年8月23日第1版)があります。第4章 質的変数とダミー変数 としてかなりのページ数を割いて実際に適用した例が示されています。

『SPSSによる回帰分析』目次

  1. 第1章 回帰分析入門 1.1 回帰分析の概要 回帰分析とは 回帰分析の用語 回帰分析の用途 1.2 回帰分析におけるデータ データの種類 測定の尺度 変数の種類
  2. 第2章 単回帰分析 2.1 単回帰分析の基本 例題1 回帰式 回帰式の有意性 回帰式の有効性 母回帰係数の信頼区間 2.2 残差の検討 個々の残差 残差のヒストグラム 標準化残差の正規確率プロット 2.3 区間推定 母回帰式の信頼区間 個々のデータの予測区間 2.4 SPSS の手順 単回帰分析 散布図
  3. 第3章 重回帰分析 3.1 重回帰分析における予備的解析 例題2 3.1.1 1変数の解析 要約統計量 データのグラフ化 3.1.2 2変数の解析 相関行列 散布図行列 3.1.3 説明変数ごとの単回帰分析 x1による単回帰分析 x2による単回帰分析 x3による単回帰分析 x4による単回帰分析 単回帰分析のまとめ 3.2 重回帰分析の実際 3.2.1 重回帰分析の基本 回帰式 回帰式の有意性 回帰式の有効性 回帰係数の有意性 標準偏回帰係数 3.2.2 残差の検討 個々の残差 残差のヒストグラム 3.2.3 回帰診断 てこ比 Cook の距離 DfBeta 3.2.4 相互検証法とリサンプリング法(1)予測精度の検証 Hold out 法 K-fold 法 Leave-One-Out 法(2)回帰係数の検証 Jackknife 法 Bootstrap 法 3.3 SPSS の手順 要約統計量 ヒストグラム・箱ひげ図・幹葉図 ドットプロット 相関行列 散布図行列 3次元散布図 単回帰分析 重回帰分析 回帰診断 Bootstrap法
  4. 第4章 質的変数とダミー変数 4.1 質的変数を含んだ回帰分析 例題3 データのグラフ化 4.1.1 質的変数とダミー変数 4.1.2 ダミー変数の使い方 数値例1 数値例2 数値例3 4.1.3 カテゴリの数が3 つ以上のダミー変数 4.1.4 ダミー変数の作成 4.2 数量化理論Ⅰ類と共分散分析 4.2.1 数量化理論Ⅰ類 例題4 4.2.2 一般線形モデル 4.2.3 共分散分析 例題5 質的変数を含んだ重回帰分析 データのグラフ化 ダミー変数による重回帰分析の結果 共分散分析の結果 4.3 SPSS手順
  5. 第5章 回帰分析における説明変数の選択 5.1 変数選択の方法 5.1.1 変数選択の必要性 重要な変数と不要な変数 良い回帰式 説明変数の選択方法 変数選択の基準 5.1.2 ステップワイズ法 例題6 変数選択基準の設定 ステップワイズ法の結果 5.1.3 ベストサブセット法 5.2 説明変数の組合せで生じる問題 5.2.1 多重共線性 多重共線性とは 許容度 VIF 例題7 説明変数同士の相関行列 説明変数ごとの単回帰分析 回帰係数の符号逆転 5.2.2 解の一意性 例題8 5.2.3 欠損値の扱い 例題9 リストごとに除外した解析結果 ペアごとに除外した解析結果 平均値で置き換えた解析結果 5.3 SPSS の手順 重回帰分析(ステップワイズ法) ベストサブセット法
  6. 第6章 ロジスティック回帰分析 6.1 ロジスティック回帰の基本 6.1.1 ロジスティック回帰とは 例題10 ロジスティック回帰の概念 データのグラフ化 ロジスティック回帰の結果 6.1.2 完全分離 例題11 6.1.3 SPSS の手順 6.2 ロジスティック回帰の実践 6.2.1 多重ロジスティック回帰 ロジスティック回帰の種類 例題12 ロジスティック回帰の結果 データのグラフ化 ロジスティック回帰の結果 6.2.2 変数選択 変数選択の方法 変数選択の結果 6.3 SPSS の手順 ロジスティック回帰 ロジスティック回帰(尤度比による変数減少法)
  7. 第7章 生存分析とCox 回帰 7.1 生存分析 7.1.1 Kaplan- Meier 法による生存率曲線 例題13 生存分析とは 生存率 生存率曲線 7.1.2 生存率曲線の比較と検定 例題14 2つの生存率の違いに関する検定 ログランク検定の結果 7.2 Cox 回帰 7.2.1 比例ハザードモデル 例題15 比例ハザードモデル Cox回帰の結果 7.2.2 複数の説明変数を含むCox 回帰 例題16 複数の説明変数 7.3 SPSS の手順 Kaplan- Meier 法による生存率曲線の作成 ログランク検定 Cox 回帰 複数の説明変数を含むCox 回帰
  8. 第8章 パス解析と因果分析 8.1 因果関係の解析 8.1.1 説明変数間の因果関係 因果関係の整理 8.1.2 パス解析の概念 パス図 パス解析 8.2 パス解析の実際 8.2.1 回帰分析を用いたパス解析 x1を説明変数、x2を目的変数とする回帰分析 x1を説明変数、x3を目的変数とする回帰分析 x2とx3を説明変数、x4を目的変数とする回帰分析 x4を説明変数、yを目的変数とする回帰分析 8.2.2 共分散構造分析を用いたパス解析 共分散構造分析 AMOS による解析結果

参考

  1. SPSSにおけるカテゴリー変数のとりあつかい 2012年
  2. 04. 重回帰分析 京都大学 加納 学

SPSSなどの統計ソフトを用いると重回帰分析を行うこと自体は非常に簡単です。エクセルで独立変数や従属変数をまとめておいて、SPSSでそのエクセルファイルを読み込み、どの列が従属変数でどの列が独立変数かを選べば、ワンクリック、一瞬で分析が終わります。しかし難しいのは、結果の解釈です。

  1. 多変量解析の手法別解説 > 重回帰分析 アイスタット

予測」は,重回帰分析の目的の一つであり,そこでの変量間の関係は回帰関係である.ただし,それが因果関係となるかどうかには注意深い考察が必要となる.得られた回帰式y=a+bxにおいて,b >0のとき『xが1単位大きければyが平均的にbだけ大きい』という解釈は妥当であるが,それは『xを1単位大きくすればyは平均的にbだけ大きくなる』ことを一般に意味しない.その解釈が成立するためには因果関係が必要となる (統計的因果推論の視点による重回帰分析 岩崎 学 日本統計学会誌第50巻,第2号, 2021年3月 363頁ー379頁

偏回帰係数とは:解釈する際の注意点 

他の独立変数を一定にした上で,x1を動かしてみたらyがどう変わるか」という,x1からyへの直接的な効果を示しているのが偏回帰係数です.(重回帰分析について 1.単回帰・重回帰分析における基本的な注意点 koumurayama.com)

(標準)偏回帰係数は,「他の独立変数から当該の独立変数を予測する回帰分析における残差」と「従属変数(ないし,他の独立変数から従属変数を予測する回帰分析における残差)」の関係を示すものであり,「当該の独立変数そのもの」と「従属変数」の関係を示しているものではない。すなわち,偏回帰係数は,当該の独立変数を「他の独立変数から説明される成分」と「説明されない(他の独立変数とは無相関であるために,一般に『独自なものである』という言葉で表現されている)残りの成分」に直交分解したときの後者の成分の従属変数との関係を示すものであり,後者の成分に関する値は,「他の独立変数の値を一定に統制したときの当該の独立変数の値」と言えるものであるとともに,「各対象の当該の独立変数の値が『他の独立変数の値のわりに』どの程度大きいか,または,小さいか」ということを意味しているものである(ただし,これは「変数間の関係が線形であるとともに,独立変数同士の交互作用効果が存在していない」という前提のもとでのことである)。(心理学的研究における重回帰分析の適用に関わる諸問題 心理学研究2021年

重回帰分析における多重共線性の問題

多重共線性に注意するために、回帰分析を行う際には、まず説明変数間の相関行列を見て、相関がとても強いものがあれば、片方は説明変数から除く、といったことが必要である。(分析実習資料2015/6SPSSによる重回帰分析村瀬洋一)

  1. 多変量解析の前に相関行列を見よう 2019年3月21日 投稿者: ADMIN muscle-hypertrophy.com 「分析」→「相関」→「2変量…」を選択

因果関係について

重回帰分析では、従属変数を独立変数を含む数式で表すので、あたかもそこに因果関係があるかのように感じる人もいると思います。しかし、この数式の意味するところは、あくまで、従属変数がこの数式によってうまく表現できるというだけのことです。因果関係を示すものではありません。

  1. 心理データ解析 第6回(1) 多変量解析とは 「因果関係がある」というためには少なくとも以下の3点を満たす必要がある 1独立変数(説明変数)が従属変数(基準変数)よりも時間的に先行していること 2理論的な観点からも因果の関係に必然性と整合性があること 3他の変数の影響をのぞいても,2つの変数の間に共変関係があること

参考

  1. 重回帰分析 日経リサーチ 重回帰分析の結果を得たら、そのまま鵜呑みにして直ちに結果の解釈をするのではなく、重回帰モデルが適切か否かを、まず評価する。統計ソフトウエアには以下のような評価指標も出力される。
  2. 人事データ活用入門 第4回 因果関係を分析する一手法「回帰分析」とは リクルートマネージメントソリューションズ
  3. SPSSで回帰分析を実施する方法!結果が有意でない場合の解釈は いちばんやさしい、医療統計
  4. 読めば納得。重回帰分析で失敗しがちな事例10|マーケティングと重回帰分析 − その3 ADVA MAGELLAN 2021年3月23日
  5. アパートの家賃(2)ダミー変数を用いた重回帰分析 cuc.ac.jp

 

複数の要因(独立変数)で、「結果」がどのように説明できるかを調べる手法が重回帰分析ですが、重回帰分析においては、個々の独立変数が互いに影響しあっていない(多重共線性が無い)ことが必要です。しかし多くの場合には、互いに影響しあっているため、それを考慮できる方法としてパス解析があります。パス解析では観測できる量だけからなる独立変数、従属変数の関係性を調べますが、さらには、直接には観測できない量(例えば、性格の朗らかさ)も想定した関係性を調べたい場合に、共分散構造分析が使われます。

共分散構造分析という言葉は、構造方程式モデリング(Structural equation modeling; SEM)とほぼ同義に使われているようです。共分散分析(ANCOVA)は共分散構造分析と名前が似ていて紛らわしいですが別物のようです。

  1. 共分散構造分析の基礎と実際—-基礎編—-狩野 裕(大阪大学大学院人間学研究科 2002年11月11日SSJデータ・アーカイブ  第66回公開セミナー: StructuralEquationModeling構造方程式モデル(モデリング)–近年は共分散構造分析よりもメジャーな名称

共分散構造分析とは

共分散構造分析とは、わかりやすく言うと、直接観測できない「潜在変数」を導入し、導入した潜在変数と観測変数との間の因果関係を同定する統計学的手法のことです。

  1. 共分散構造分析の基礎と実際—-基礎編—- SSJデータ・アーカイブ第6回公開セミナー 2002年年11月月11日
  2. 共分散構造分析の基礎と実際—-応用編—- 狩野 裕(大阪大学大学院人間学研究科)
  3. 共分散構造分析 多変量解析の手法別解説 統計分析研究所アイスタット

共分散構造分析と重回帰分析との違い

単回帰分析、重回帰分析、パス解析、共分散構造分析(SEM)の違いは、下のサイトの図がわかりやすい。

  1. 単回帰分析・重回帰分析・共分散構造分析とパス解析 GMORESEARCH

従属変数(結果)が1個、独立変数(要因)が1個でそれらの関係を調べるのが単回帰分析。要因が複数、つまり独立変数が複数あってそれらと従属変数との関係を調べるのが重回帰分析。独立変数同士にも関連性があることを想定した解析手法が、パス解析。測定可能ではない量「潜在変数」まで考えて関連性を調べることができるのが共分散構造分析ということになります。

共分散構造分析におけるパス解析(パス図)とは

  1. パス解析 日経リサーチ
  2. 顧客理解を可能とするパス解析|因果関係を徹底的に探る KOTODORI
  3. 分析2:調在データの分析 人工知能学会誌21巻5号(2006年9月

構造方程式モデリングとは

  1. SEMは心理学に何をもたらしたか? The Annual Report of Educational Psychology in Japan2020, Vol. 59, 292-303 ・時流に乗った,数学的には高度な新しい分析法を使った,脱常識性が感じられない研究,データと大きく乖離した主張をしている研究の量産 ・時流に乗った,数学的には高度な新しい分析法を使った研究が優れた研究であるという思い込み(?)の蔓延 ・データの収集法に関して工夫をして,脱常識性の高い因果関係を提示しようとする姿勢の阻害・相関と因果,測定の妥当性,相関的研究における変動因の問題などの,心理学にとって基本的で非常に重要なことを踏まえない傾向の助長
  2. 製品開発のためのマーケティングリサーチへの構造方程式モデリングの応用
  3. SEMによる因果分析入門–パス解析から傾向スコアまで– 大阪大学 大学院基礎工学研究科 狩野 裕
  4. 産後の抑うつ状態の複雑な予測

共分散構造分析の手順

SPSSによる共分散構造分析

Rによる共分散構造分析

『共分散構造分析 R編』

pythonによる共分散構造分析

エクセルによる共分散構造分析

共分散構造分析の教科書

『共分散構造分析 入門編』

『共分散構造分析 応用編』

『共分散構造分析 疑問編』

SPSSとAmosによる心理・調査データ解析

小塩真司『SPSSとAmosによる心理・調査データ解析 : 因子分析・共分散構造分析まで』第3版  東京図書, 2018.

図解でわかる共分散構造分析

涌井良幸, 涌井貞美『図解でわかる共分散構造分析 : データから「真の原因」を探り出す新しい統計分析ツール』日本実業出版社, 2003.

 

参考

  1. 統計分析法の分類  予測・説明関係を検討する統計的検定法の分類 予測・説明関係を検討する多変量データ解析法の分類
  2. 看護学における多変量解析の利用―国内文献の検討結果から― 飯島 純夫
  3. 高等教育研究のための計量手法の整理 中尾走、樊怡舟 広島大学大学院教育学研究科 広島大学高等教育研究開発センター(RIHE)では,大学教員に対する調査がこれまで何度も行われており,研究生産性というテーマで大学教員の論文数を従属変数にして分析
  4. 構造方程式モデリングは,因子分析,分散分析,パス解析のすべてにとって代わるのか? 狩野 裕 行動計量学 第29巻第 2号 (通巻57号)2002年,138~159
  5. 「討論:共分散構造分析」の特集にあたって 豊田秀樹  行動計量学 第29巻第 2号 (通巻57号)2002年,135~137

 

 

医療統計ソフトは無料のもの(Rなど)から非常に高価なものまで(SPSSなど)いろいろありますが、医学研究の分野ではSPSS(IBM社)が定番のようです。SPSSの使い方に関する教科書・書籍が多数ありますので、まとめておきます。

 

SPSSによる回帰分析

内田 治『SPSSによる回帰分析』(オーム社 2013年8月23日 )

  1. 第1章 回帰分析入門 ◇1.1 回帰分析の概要 ■回帰分析とは ■回帰分析の用語 ■回帰分析の用途 ◇1.2 回帰分析におけるデータ ■データの種類 ■測定の尺度 ■変数の種類
  2. 第2章 単回帰分析 ◇2.1 単回帰分析の基本 ■例題1 ■回帰式 ■回帰式の有意性 ■回帰式の有効性 ■母回帰係数の信頼区間 ◇2.2 残差の検討 ■個々の残差 ■残差のヒストグラム ■標準化残差の正規確率プロット ◇2.3 区間推定 ■母回帰式の信頼区間 ■個々のデータの予測区間 ◇2.4 SPSS の手順 ■単回帰分析 ■散布図
  3. 第3章 重回帰分析 ◇3.1 重回帰分析における予備的解析 ■例題2 ○3.1.1 1変数の解析 ■要約統計量 ■データのグラフ化 ○3.1.2 2変数の解析 ■相関行列 ■散布図行列 ○3.1.3 説明変数ごとの単回帰分析 ■x1による単回帰分析 ■x2による単回帰分析 ■x3による単回帰分析 ■x4による単回帰分析 ■単回帰分析のまとめ ◇3.2 重回帰分析の実際 ○3.2.1 重回帰分析の基本 ■回帰式 ■回帰式の有意性 ■回帰式の有効性 ■回帰係数の有意性 ■標準偏回帰係数 ○3.2.2 残差の検討 ■個々の残差 ■残差のヒストグラム ○3.2.3 回帰診断 ■てこ比 ■Cook の距離 ■DfBeta ○3.2.4 相互検証法とリサンプリング法 (1)予測精度の検証 ■Hold out 法 ■K-fold 法 ■Leave-One-Out 法 (2)回帰係数の検証 ■Jackknife 法 ■Bootstrap 法 ◇3.3 SPSS の手順 ■要約統計量 ■ヒストグラム・箱ひげ図・幹葉図 ■ドットプロット ■相関行列 ■散布図行列 ■3次元散布図 ■単回帰分析 ■重回帰分析 ■回帰診断 ■Bootstrap法
  4. 第4章 質的変数とダミー変数 ◇4.1 質的変数を含んだ回帰分析 ■例題3 ■データのグラフ化 ○4.1.1 質的変数とダミー変数 ○4.1.2 ダミー変数の使い方 ■数値例1 ■数値例2 ■数値例3 ○4.1.3 カテゴリの数が3 つ以上のダミー変数 ○4.1.4 ダミー変数の作成 ◇4.2 数量化理論Ⅰ類と共分散分析 ○4.2.1 数量化理論Ⅰ類 ■例題4 ○4.2.2 一般線形モデル ○4.2.3 共分散分析 ■例題5 ■質的変数を含んだ重回帰分析 ■データのグラフ化 ■ダミー変数による重回帰分析の結果 ■共分散分析の結果 ◇4.3 SPSS手順
  5. 第5章 回帰分析における説明変数の選択 ◇5.1 変数選択の方法 ○5.1.1 変数選択の必要性 ■重要な変数と不要な変数 ■良い回帰式 ■説明変数の選択方法 ■変数選択の基準 ○5.1.2 ステップワイズ法 ■例題6 ■変数選択基準の設定 ■ステップワイズ法の結果 ○5.1.3 ベストサブセット法 ◇5.2 説明変数の組合せで生じる問題 ○5.2.1 多重共線性 ■多重共線性とは ■許容度 ■VIF ■例題7 ■説明変数同士の相関行列 ■説明変数ごとの単回帰分析 ■回帰係数の符号逆転 ○5.2.2 解の一意性 ■例題8 ○5.2.3 欠損値の扱い ■例題9 ■リストごとに除外した解析結果 ■ペアごとに除外した解析結果 ■平均値で置き換えた解析結果 ◇5.3 SPSS の手順 ■重回帰分析(ステップワイズ法) ■ベストサブセット法
  6. 第6章 ロジスティック回帰分析 ◇6.1 ロジスティック回帰の基本 ○6.1.1 ロジスティック回帰とは ■例題10 ■ロジスティック回帰の概念 ■データのグラフ化 ■ロジスティック回帰の結果 ○6.1.2 完全分離 ■例題11 ○6.1.3 SPSS の手順 ◇6.2 ロジスティック回帰の実践 ○6.2.1 多重ロジスティック回帰 ■ロジスティック回帰の種類 ■例題12 ■ロジスティック回帰の結果 ■データのグラフ化 ■ロジスティック回帰の結果 ○6.2.2 変数選択 ■変数選択の方法 ■変数選択の結果 ◇6.3 SPSS の手順 ■ロジスティック回帰 ■ロジスティック回帰(尤度比による変数減少法)
  7. 第7章 生存分析とCox 回帰 ◇7.1 生存分析 ○7.1.1 Kaplan- Meier 法による生存率曲線 ■例題13 ■生存分析とは ■生存率 ■生存率曲線 ○7.1.2 生存率曲線の比較と検定 ■例題14 ■2つの生存率の違いに関する検定 ■ログランク検定の結果 ◇7.2 Cox 回帰 ○7.2.1 比例ハザードモデル ■例題15 ■比例ハザードモデル ■Cox回帰の結果 ○7.2.2 複数の説明変数を含むCox 回帰 ■例題16 ■複数の説明変数 ◇7.3 SPSS の手順 ■Kaplan- Meier 法による生存率曲線の作成 ■ログランク検定 ■Cox 回帰 ■複数の説明変数を含むCox 回帰
  8. 第8章 パス解析と因果分析 ◇8.1 因果関係の解析 ○8.1.1 説明変数間の因果関係 ■因果関係の整理 ○8.1.2 パス解析の概念 ■パス図 ■パス解析 ◇8.2 パス解析の実際 ○8.2.1 回帰分析を用いたパス解析 ■x1を説明変数、x2を目的変数とする回帰分析 ■x1を説明変数、x3を目的変数とする回帰分析 ■x2とx3を説明変数、x4を目的変数とする回帰分析 ■x4を説明変数、yを目的変数とする回帰分析 ○8.2.2 共分散構造分析を用いたパス解析 ■共分散構造分析AMOS による解析結果
  9. 付録 ◇付録(1) 一般化線形モデル ◇付録(2) 曲線回帰 ◇付録(3) 回帰木と分類木 ■決定木 ■回帰木の例 ■分類木の例 ◇付録(4) 多重共線性の診断 ◇付録(5) ケースの数と説明変数の数

SPSSを使って重回帰分析をやりたければ、実際的な手順の説明などはこの本が一番詳細だと思います。数式による説明はほとんどないので、そういう説明が苦手な人には読みやすい。

参考

  1. 本書のウェブサイト(データダウンロードサイト
  2. 著者ウェブサイト:内田治 准教授 教員情報 東京情報大学 

 

SPSSによる統計データ解析

柳井 晴夫, 緒方 裕光 編著 改訂新版『SPSSによる統計データ解析 医学・看護学、生物学、心理学の例題による統計学入門』April 1, 2006 現代数学社

  1. 第1章 SPSSの基本的使い方 1.1 データファイルの作成手法 1.2 データの加工(椎名久美子)
  2. 第2章 データの要約 2.1 度数分布表 2.2 単純集計のグラフ表現 2.3 代表値と散らばりの指標 2.4 クロス集計表とグラフ表現 2.5 相関係数 2.6 層別の分析(椎名久美子)
  3. 第3章 統計的推論 3.1 平均値についての推論 3.2 分散についての推論 3.3 相関係数についての推論 3.4 分割表についての推論 3.5 比率についての推論(石井秀宗)
  4. 第4章 分散分析 4.1 一元配置分散分析 4.2 多重比較 4.3 多元配置分散分析(緒方祐光)
  5. 第5章 回帰分析 5.1 単回帰分析 5.2 重回帰分析(佐伯圭一郎)
  6. 第6章 測定の信頼性と妥当性 6.1 測定の信頼性 6.2 測定の妥当性(石井秀宗)
  7. 第7章 主成分分析 7.1 主成分分析の概要 7.2 相関行列に基づく主成分分析 7.3 分散共分散行列に基づく主成分分析 7.4 主成分分析による多変量外れ値の検出(伊藤圭)
  8. 第8章 因子分析 8.1 因子分析の概要 8.2 因子の抽出 8.3 因子の回転 8.4 その他の分析(西川浩昭)
  9. 第9章 クラスター分析 9.1 ケースのクラスタリング 9.2 変数のクラスタリング(西川浩昭)
  10. 第10章 判別分析 10.1 判別分析の概要 10.2 解析例1(3グループの場合) 10.3 解析例2(2グループの場合) 10.4 判別分析に関するその他の問題(Q&A)(林篤裕)
  11. 第11章 ロジスティック回帰分析 11.1 2項ロジスティック回帰 11.2 多項ロジスティック回帰(緒方祐光)
  12. 第12章 対数線形モデル 12.1 基本モデル 12.2 ロジット対数線形モデル(緒方祐光)
  13. 第13章 生存時間データの解析 13.1 生命表 13.2 カプラン・マイヤー法 13.3 比例ハザードモデル(吉本泰彦)
  14. 第14章 さらに進んだ分析法ー多変量解析法を中心としてー(柳井晴夫)

数学書の出版で定評のある現代数学社から出ているSPSSを用いた統計解析の解説書。初版が2006年ですから、信頼のおけるロングセラーです。SPSSがどんどんバージョンアップしているのでそれに合わせるために改訂版が出たそうです。

SPSSのメニューのド個をクリックしてみたいな実際的な手順がある一方で、極めて簡潔ながら理屈に関する説明も多少あって、バランスが良いスタイル。

 

SPSSで学ぶ医療系データ解析

対馬 栄輝『SPSSで学ぶ医療系データ解析 第2版』December 7, 2016 東京図書

  1. 第1章 データの設定 §1.1 データ入力の方法 §1.2 値ラベルの設定:数値データを日本語表示する
  2. 第2章 データ解析の基本事項 §2.1 データとは §2.2 標本と母集団 §2.3 データの尺度 §2.4 データ縮約のための記述統計量 §2.5 データの分布(確率分布) §2.6 標本分布 §2.7 信頼区間(区間推定) §2.8 SPSSによる記述統計量 §2.9 グラフ
  3. 第3章 統計的検定の基礎 §3.1 統計的仮説とは §3.2 統計的「有意」とは §3.3 第I 種の誤り, 第II 種の誤り §3.4 両側検定, 片側検定 §3.5 パラメトリック検定とノンパラメトリック検定 §3.6 パラメトリック検定,ノンパラメトリック検定の選択法 §3.7 SPSSによるShapiro-Wilk検定
  4. 第4章 検定の選択方法 §4.1 標本の数の数え方 §4.2 データどうしの差を検定したい(2つまでのデータの差) §4.3 データ列どうしの関連性を見たい §4.4 名義尺度データの頻度の偏りや関連度を見たい §4.5 3 つ以上の標本・変数の差をみたい §4.6 測定の信頼性を知りたい
  5. 第5章 差の検定 §5.1 差の検定とは §5.2 平均に関する検定(パラメトリックな法) §5.3 分布中心の差に関する検定(ノンパラメトリックな手法) §5.4 差の検定における注意事項
  6. 第6章 相関・回帰分析 §6.1 相関とは §6.2 回帰分析とは §6.3 相関と回帰分析における注意事項 §6.4 相関における注意点 §6.5 回帰分析における注意点
  7. 第7章 分割表の検定 §7.1 分割表の検定とは §7.2 連関係数とは §7.3 リスク比オッズ比 §7.4 Mantel-Haenszel推定量 §7.5 分割表検定における注意事項
  8. 第8章 1元配置分散分析 §8.1 分散分析とは §8.2 t検定のくり返しによる検定多重性の問題 §8.3 1元配置分散分析(パラメトリックな手法) §8.4 Kruskal-Wallis検定(ノンパラメトリックな手法) §8.5 分散分析における注意事項
  9. 第9章 多重比較法 §9.1 多重比較法とは §9.2 パラメトリックな手法(等分散性が仮定できるとき) §9.3 パラメトリックな手法(等分散性が仮定できないとき) §9.4 SPSSによる多重比較法 §9.5 ノンパラメトリックな手法 §9.6 多重比較法における注意事項 §9.7 多重比較法の手法選択
  10. 第10章 2元配置分散分析 §10.1 2元配置分散分析とは §10.2 交互作用 §10.3 要因について §10.4 SPSSによる2元配置分散分析(くり返しのある) §10.5 2元配置分散分析結果の読み方 §10.6 交互作用が有意であったときの対応 §10.7 SPSSによる2元配置分散分析(くり返しのない) §10.8 実験計画 §10.9 2元配置分散分析における注意事項
  11. 第11章 反復測定による分散分析 §11.1 反復測定による分散分析とは §11.2 SPSSによる反復測定による分散分析 §11.3 Friedman検定(ノンパラメトリックな手法) §11.4 元配置以上の分散分析と反復測定による分散分析の関係 §11.5 反復測定による分散分析における注意事項
  12. 第12章 検者間・検者内信頼性係数 §12.1 級内相関係数(ICC)とは §12.2 級内相関係数(ICC)の基礎理論 §12.3 級内相関係数(パラメトリックな手法) §12.4 SPSSによる級内相関係数 §12.5 カッパ係数とは(ノンパラメトリックな手法) §12.6 SPSSによるカッパ係数 §12.7 検者間・検者内信頼性係数における注意事項
  13. 第13章 重回帰分析 §13.1 重回帰分析とは §13.2 重回帰式を作るための基礎知識(変数選択の手順) §13.3 重回帰分析の結果を判定する指標 §13.4 モデルの適合度評価 §13.5 SPSSによる重回帰分析 §13.6 重回帰分析の結果の読み方 §13.7 重回帰分析における注意事項 §13.8 関連するその他の手法
  14. 第14章 多重ロジスティック回帰分析 §14.1 多重ロジスティック回帰分析とは §14.2 解析のしくみ §14.3 変数選択の方法 §14.4 多重ロジスティック回帰分析の結果を判定する指標 §14.5 モデルの適合度評価 §14.6 変数の加工 §14.7 SPSSによる多重ロジスティック回帰 §14.8 多重ロジスティック回帰分析における注意事項と類似手法の紹介

この本は、実験で頻出する「反復測定」のデータの解析に関してひとつの章を割いて説明していて、自分には役立ちました。よくある実験デザインなのに、その解析方法に関して十分な紙面を割いた本は意外と少ないため。

参考

  1. 著者ウェブサイト:対馬栄輝研究室 弘前大学 医学部 保健学科 理学療法学専攻 著者略歴:弘前大学医療技術短期大学部理学療法学科(保健衛生学士)、弘前大学 大学院 理学研究科 (修士課程)、弘前大学大学院 医学研究科 社会医学系 公衆衛生学講座(博士課程)、弘前大学大学院保健学研究科(教授)

 

SPSSとAmosによる心理・調査データ解析

小塩真司『SPSSとAmosによる心理・調査データ解析 : 因子分析・共分散構造分析まで 第3版 』東京図書, 2018.

  1. 第1章 データ解析の基本事項――データの形式,入力と代表値
  2. 第2章 相関と相関係数――データの関連を見る
  3. 第3章 χ2検定・t 検定――2変数の相違を見る
  4. 第4章 分散分析――3変数以上の相違の検討
  5. 第5章 重回帰分析――連続変数間の因果関係
  6. 第6章 因子分析――潜在因子からの影響を探る
  7. 第7章 因子分析を使いこなす――尺度作成と信頼性の検討
  8. 第8章 共分散構造分析――パス図の流れをつかむ
  9. 第9章 共分散構造分析を使いこなす――多母集団の同時解析とさまざまなパス図
  10. 第10章 カテゴリを扱う多変量解析――クラスタ分析・判別分析・ロジスティック回帰分析・コレスポンデンス分析

医学・保健学の例題による 統計学』 1982/10/1 豊川 裕之, 柳井晴夫 (編)

  • 豊川裕之 第1章 統計学を学ぶに当たって
  • 丸井英二 第2章 統計データと調査
  • 三宅由子 第3章 記述統計
  • 丸井英二 第4章 相関と回帰
  • 高木廣文 第5章 確率分布
  • 高木廣文 第6章 標本分布
  • 青木繁伸 第7章 検定と推定の考え方
  • 青木繁伸 第8章 検定と推定の実際
  • 柳井晴夫 第9章 実験計画法

本書は、推薦文の説明によると、東京大学医学部保健学科で実施されている統計・情報処理講義演習の内容を整理する形で纏められたものだそうです。図書館で借りて読みましたが、丁寧に書かれた教科書でした。統計の教科書は、数学音痴のためにことさらわかりやすさを強調したものが多いですが、この本はそういった最近よく見る本よりもむしろ説明が丁寧でわかりやすい印象を持ちました。

アウトカムが連続変数で、原因となっている因子の候補がカテゴリー変数(有か無か)で複数ある場合にどの因子の寄与が一番大きいのかを調べたい、そんなときにつかう多変量解析の手法が、「数量化I類」と呼ばれるものです。

多変量解析と一言でいっても条件によって選ぶべき手法は異なりますので、混同しないことが大事。要因(説明変数、独立変数)と結果(従属変数、目的変数)が、連続的な数なのかそれともカテゴリー変数なのかに着目すると、選ぶべき多変量解析の手法が自ずと定まります。

多変量解析の手法の選択基準

独立変数:連続量、従属変数:連続量なら、重回帰分析

独立変数:連続量、従属変数:カテゴリーなら、判別分析

独立変数:カテゴリー、従属変数:連続量なら、数量化I類

独立変数:カテゴリー、従属変数:カテゴリーなら、数量化II類

となります。

  1. 第4章多変量解析4.外的基準が分類の場合の分析方法(https://www.bunkyo.ac.jp/~hotta/lab/courses/2003seminar/ch4-4_5_hotta.pdf)
  2. 統計分析法の分類(https://www.educa.nagoya-u.ac.jp/~ishii-h/materials/analysis_methods.pdf)

数量化1類では、独立変数がカテゴリーですがそれをダミー変数に置き換えてしまうので、そうなるとあとは重回帰分析と全く同じということになります。ダミー変数というのは例えばアンケート調査項目で、リンゴの嗜好に関して好き、普通、嫌いという選択肢があった場合に、回答者の回答で該当するものを1、他を0といった具合に、一つだけ1にして後は0にしてしまうものです。ここで、「好き」、「普通」、「嫌い」はカテゴリー変数と呼ばれます。「リンゴの嗜好」という項目のことは、アイテムと呼ばれます。

 

判別分析とロジスティック回帰分析との違い

連続量⇒カテゴリー という流れでいうと、判別分析とロジスティック回帰分析は似ていますが、何が違うのでしょうか。

  1. イルミネーションライト ソーラー イルミネーション ガーデンライト 飾りライト LED ストリングライト 屋外 LED 12電球 4M 8パターン CGL通信 vol39 「多変量解析の宝石学への応用」
  2. ロジスティック回帰 アイスタット ロジスティック回帰分析と似ている多変量解析に判別分析があります。‥ 両者の違いを調べてみます。

数量化I類を適用できる例数

  1. 多変量解析の手法別解説>数量化1類 アイスタット 個体数>カテゴリー総数-説明変数個数+1

数量化I類を適用する具体的な事例

多変量解析の手法別解説>数量化1類 アイスタット

目的変数:海外旅行回数

説明変数:性別(男性、女性)、年齢(若年、中年、高年)、血液型(A,B,O,AB) (カテゴリー総数=2+3+4=9、説明変数の個数=3)

目的変数:1日の新聞売り上げ部数

説明変数:曜日(月・火・水・木・金・土・日)、天候(晴・雨・小雨)、前日の野球の試合での巨人の勝敗(勝・負)、当日および前後の競馬の有無(有・無)

数量化1類 日経リサーチ

目的変数:立候補者の得票率

説明変数:政党(自民・民進・無所属)、職歴(元・現・新)、性別(男・女)

https://www.bunkyo.ac.jp/~hotta/lab/courses/2003seminar/ch4-3_huang.files/frame.htm

目的変数:英語の小テストの点

説明変数:英語が好きかどうかの質問

 

多変量解析の教科書

  1. 柳井 晴夫, 竹内 啓『射影行列・一般逆行列・特異値分解』(UP応用数学選書10 )新装版  2018/9/25  東京大学出版会 多変量解析の数学的な原理である線形代数を学ぶのに良さげな本。
  2. 足立 堅一『多変量解析入門』2005/12/20  ‎ 篠原出版新社 多変量解析の数学的な基盤である線形代数をわかりやすく解説した本。多変量解析への応用という強いモチベーションを持ちつつ、線形代数が学べるという点に特色があるのかも。
  3. 柳井晴夫『多変量データ解析法 理解と応用』(行動計量学シリーズ8)朝倉書店1994年12月5日定価3399円(本体3300円)図書館で借りて読みましたが、多変量解析の手法が網羅的に解説されています。数学的な根拠も説明されています。巻末の16ページに、本書で用いた線形代数の定理が簡潔にまとめられており、必要な数学を俯瞰できて便利。数量化I類の説明は103~105ページ
  4. 柳井 晴夫, 高根 芳雄『多変量解析法』 (現代人の統計) 新版 1985/6/1 朝倉書店
  5. 竹内啓, 柳井晴夫『多変量解析の基礎―線型空間への射影による方法』1972年 東洋経済新報社

新型コロナウイルス蔓延によるCOVID-19により世界の生活が全て一変してしまいましたが、最近興ってきた変異株オミクロンは病原性がデルタ株などよりも弱くて感染力は強いので、デルタ株などを駆逐して、COVID-19パンデミックを収束に向かわせるのではないかという期待感があるようです。

WASHINGTON (TND) — The World Health Organization is predicting the omicron variant could change the course of the pandemic. WHO Director-General Tedros Adhanom Ghebreyesus says the exact impact is “still difficult to know,” as recent reports suggest the variant appears to be less mild. “This actually is very encouraging news. The World Health Organization so far says there has not been one reported death from omicron in the world,” said Dr. Jeffrey Singer to The National Desk’s Jan Jeffcoat. “Since this appears to be four times more contagious than a delta variant, hopefully, this will crowd out the delta variant eventually.” Singer says COVID-19 could become nothing more than a recurring endemic cold. (Omicron variant could change COVID-19 to just a ‘recurring endemic cold,’ says doctor by ELISSA SALAMY, The National DeskFriday, December 10th 2021 thenationaldesk.com)

 

  1. オミクロン株は「終わりの始まり」説 コロナとの戦い、もうすぐ終了の期待 2021年12月10日20時10分 J-CASTトレンド  米ブルームバーグも同日、「オミクロンは感染力がこれまでの変異株よりも強い可能性がある一方、初期の報告によれば致死性は低いともみられる。これは歴史的に観察されたウイルスの進化パターンに合致している」「オミクロン株は新型コロナパンデミックの終焉(しゅうえん)が近いことを示唆している可能性がある」という米国大手証券会社の専門家の見方を伝えた。