多変量解析入門

足立 堅一『多変量解析入門 線形代数から多変量解析へ』 篠原出版新社 December 20, 2005

書名は多変量解析入門ですが、中身は多変量解析で使われる線形代数の解説だそうです。多変量解析の基盤となっている数学的な原理に関する解説書としては、もっともわかりやすく(数学が苦手な人にもわかるように)書かれているみたいです。

射影行列・一般逆行列・特異値分解

柳井・竹内『射影行列・一般逆行列・特異値分解』 新装版 2018

第6章応用 のところでようやく多変量解析などの話題が出てきます。第5章まではひたすら数学的な準備といったところでしょうか。自分は図書館で借りてみましたが、自分の数学的能力では読み進めるのが辛すぎて挫折しました。数学の本に手を出す場合には、身の丈にあった本にすべきだと痛感。

多変量解析の基礎

柳井・竹内『多変量解析の基礎』1972

医学研究を進めるうえで医療統計学の知識、特に多変量解析の知識が欠かせません。SPSSなどのソフトにただデータを入れれば、何かしらの結果は出ますが、それだと結果の解釈の段階で途方にくれてしまいます。やはり多変量解析の原理的な部分を抑えておく必要があるでしょう。どれだけ数学的なバックグラウンドがあるか、数学的な原理から理解したいという動機があるかによって、お勧めの教科書は変わってきます。

一口に多変量解析の教科書といっても、対象とする読者は数学的な原理はともかく使えればいい人、定理の厳密な証明はいいけど数学的な基礎はある程度理解しておきたい人、仕事ですぐに使いたい人、統計学を勉強中の理系大学生・大学院生、勉強する時間があまり取れない実務に携わる多忙な社会人など様々なので、自分が想定された読者なのかどうかを判断する必要があります。

線形代数がメインの書籍はまた別記事にします。

→ 多変量解析を理解するための線形代数の教科書

Rによる多変量解析入門

川端 一光, 岩間 徳兼, 鈴木 雅之『Rによる多変量解析入門 データ分析の実践と理論』オーム社  July 19, 2018

手元にデータがあってすぐに分析をしたい人にピッタリの本。理論的な説明はないかわりに、結果の解釈の際の注意事項の説明が詳細。説明の順番は、データの解析、結果、解釈や数学的な理屈の順になっています。Rそのものに関しては紙面をあまり割いていないので、pythonで勉強したい人にとっても紙面が無駄になっておらず、ためになります。数学的な理屈に関してはおいおい勉強するとして、とりあえず仕事ですぐに多変量解析をやらなきゃいけない人にとってはベストの教科書ではないでしょうか。

出版社の書籍紹介によれば、

多くの多変量解析についての学習書は、理論的な説明に終始し、実務場面でどのように利用されているかについて、殆ど配慮がないのが現状です。そこで本書は、多変量解析手法の理論と実践をバランスよく解説することで、統計が得意ではない大学生や実務者にも利用しやすい構成とし、本書1冊で多変量解析手法を実務に応用できるまで習得できる内容となっています。

とのことですが、看板に偽りなしです。目次は、以下の通り。

第Ⅰ部 多変量解析の基礎
第1章 多変量解析の基礎を学びたい―R による多変量データの基本的な統計処理
第2章 R によるデータハンドリングを学びたい ―アンケートデータと ID-POS データのハンドリング
第Ⅱ部 量的変数の説明・予測
第3章 現象を説明・予測する統計モデルを作りたい (1) ―重回帰分析
第4章 現象を説明・予測する統計モデルを作りたい (2) ―階層的重回帰分析
第5章 さまざまな集団から得られたデータを分析したい―マルチレベルモデル
第6章 複雑な仮説を統計モデルとして表したい (1)―パス解析
第Ⅲ部 心理尺度の分析
第7章 心理尺度を開発したい (1) ―探索的因子分析
第8章 心理尺度を開発したい (2) ―確認的因子分析
第9章 複雑な仮説を統計モデルとして表したい (2) ―潜在変数を伴うパス解析
第Ⅳ部 質的変数の説明・予測
第10章 クロス集計表をもっとていねいに分析したい―対数線形モデル
第11章 カテゴリに所属する確率を説明・予測したい―ロジスティック回帰分析
第Ⅴ部 個体と変数の分類
第12章 似たもの同士にグループ分けしたい―クラスター分析
第13章 質的変数間の連関を視覚化したい―コレスポンデンス分析
第Ⅵ部 多変量解析を使いこなす
第14章 データが持つ情報を視覚化したい―パッケージggplot2による描画
第15章 多変量解析を実践で生かしたい―手法の組み合わせ

 

多変量解析入門

小西 貞則『多変量解析入門――線形から非線形へ』January 27, 2010 岩波書店

目次

  1. 1 はじめに 1.1 現象のモデル化 1.2 識別・判別 1.3 次元圧縮 1.4 分類
  2. 2 線形回帰モデル 2.1 2変数間の関係を捉える 2.2 多変数間の関係を捉える
  3. 3 非線形回帰モデル 3.1 現象のモデル化 3.2 基底関数に基づくモデル 3.3 基底展開法 3.4 正則化法
  4. 4 ロジスティック回帰モデル 4.1 リスク予測モデル 4.2 複合リスク予測モデル 4.3 非線形ロジスティック回帰モデル
  5. 5 モデル評価基準 5.1 予測誤差に基づく評価基準 5.2 情報量基準 5.3 ベイズ型モデル評価基準
  6. 6 判別分析 6.1 フィッシャーの線形判別 6.2 マハラノビス距離に基づく判別法 6.3 多群判別 6.4 変数選択 6.5 正準判別
  7. 7 ベイズ判別 7.1 ベイズの定理 7.2 ベイズ判別法 7.3 ロジスティック判別
  8. 8 サポートベクターマシーン 8.1 分離超平面の構成 8.2 線形分離可能でない場合のテクニック 8.3 線形から非線形へ
  9. 9 主成分分析 9.1 主成分の構成 9.2 カーネル主成分分析
  10. 10 クラスター分析 10.1 階層的分類法 10.2 非階層的分類法 10.3 混合分布モデル
  11. 付録A ブートストラップ法 付録B ラグランジュの未定乗数法 付録C EMアルゴリズム

著者の略歴は、広島大学理学部数学科卒、文部省統計数理研究所を経て九州大学大学院数理学研究院教授。専門は,非線形多変量解析,情報量統計学(岩波書店)。

アマゾンのレビューを読むと、データから数理モデルを組み立てるというアプローチとして多変量解析が解説されている、モデルを線形から非線形に拡張するように丁寧な議論となっていて、特にSVMの解説は分かりやすい、数式は多いが、出てくる数式や式展開は、パターン化していてしかも数学的な説明が丁寧なので、読みやすく大変理解しやすいとのこと。

 

多変量解析法入門

永田 靖, 棟近 雅彦『多変量解析法入門』 (ライブラリ新数学大系) サイエンス社 April 1, 2001

アマゾンのレビューを読む限り、数学が苦手な人でも追えるような丁寧さで、数式によって説明を進めているそう。目次は、

  1. 1 多変量解析法とは 1.1 多変量データ 1.2 重回帰分析とは 1.3 数量化1類とは 1.4 判別分析とは 1.5 数量化2類とは 1.6 主成分分析とは 1.7 数量化3類とは 1.8 多次元尺度構成法とは 1.9 クラスター分析とは
  2. 2 統計的方法の基礎知識 2.1 データのまとめ方 2.2 確率分布 2.3 検定と推定 練習問題
  3. 3 線形代数のまとめ 3.1 行列とベクトル 3.2 固有値と固有ベクトル 3.3 ベクトルによる微分 3.4 変数ベクトルによる期待値と分散・共分散 練習問題
  4. 4 単回帰分析 4.1 適用例と解析ストーリー 4.2 解析方法 4.3 行列とベクトルによる表現 練習問題
  5. 5 重回帰分析 5.1 適用例と解析ストーリー 5.2 説明変数が2個の場合の解析方法 5.3 説明変数がp個の場合の解析方法 5.4 行列とベクトルによる表現 練習問題
  6. 6 数量化1類 6.1 適用例と解析ストーリー 6.2 説明変数が1個の場合の解析方法 6.3 説明変数が2個以上の場合の解析方法 6.4 説明変数に量的変数と質的変数が混在する場合 練習問題
  7. 7 判別分析 7.1 適用例と解析ストーリー 7.2 変数が1個の場合の解析方法 7.3 変数が2個以上の場合の解析方法 7.4 行列とベクトルによる表現 練習問題
  8. 8 数量化2類 8.1 適用例と解析ストーリー 8.2 説明変数が1個の場合の解析方法 8.3 説明変数が2個以上の場合の解析方法 8.4 説明変数に量的変数と質的変数が混在する場合
  9. 9 主成分分析 9.1 適用例と解析ストーリー 9.2 説明変数が2個の場合の解析方法 9.3 説明変数がp個の場合の解析方法 9.4 行列とベクトルによる表現
  10. 10 数量化3類 10.1 適用例と解析ストーリー 10.2 数量化3類の基本的な考え方と解析方法 練習問題
  11. 11 多次元尺度構成法 11.1 適用例と解析ストーリー 11.2 非計量MDSの解析方法 11.3 計量MDSの考え方 練習問題
  12. 12 クラスター分析 12.1 適用例と解析ストーリー 12.2 変数が2個の場合のクラスター分析 12.3 変数がp個の場合のクラスター分析 12.4 クラスター間の距離 12.5 ウォード法 練習問題
  13. 13 その他の方法 13.1 パス解析 13.2 グラフィカルモデリング 13.3 因子分析 13.4 正準相関分析 13.5 多段層別分析 練習問題

 

多変量データ解析

杉山 高一 (著), 小椋 透 (著), 藤越 康祝『多変量データ解析』 (シリーズ“多変量データの統計科学”)  朝倉書店  November 25, 2014

出版社の説明によれば、

シグマ記号さえ使わずに平易に多変量解析を解説する」という方針で書かれた’83年刊のロングセラー入門書に,因子分析正準相関分析の2章および数理的補足を加えて全面的に改訂。主成分分析,判別分析,重回帰分析を含め基礎を確立。

とのこと。数学恐怖症の人向けのようです。

もくじ

  1. 1 相関係数 1.1 成績データの相関係数 1.2 手のデータの相関係数 1.3 相関係数の安定性 1.4 分散と共分散 1.5 数理的補足–相関係数
  2. 2 主成分分析 2.1 主成分分析とは 2.2 共分散行列による主成分分析–手のデータ 2.3 相関行列による主成分分析(1) –成績のデータ 2.4 相関行列による主成分分析(2)–被服のデータ 2.5 因子負荷量–漢字テストの分析 2.6 歯の咬耗度に基づく主成分分析 2.7 主成分スコア低次元空間表現 2.8 主成分軸の回転 2.9 固有値の信頼区間 2.10 固有ベクトルの信頼性 2.11 数理的補足–主成分分析
  3. 3 判別分析 3.1 判別分析とは 3.2 マハラノビスの距離 3.3 判別分析の考え方 3.4 2変量の判別分析 3.5 線形判別関数 3.6 多変量の判別分析–筆跡鑑定のデータ 3.7 変数選択による判別分析–逐次法(1) 3.8 変数選択による判別分析–逐次法(2) 3.9 変数選択による判別分析–AIC 規準・誤判別確率 3.10 線形判別分析の頑健性 3.11 逐次法における規準値とAIC 規準 3.12 数理的補足–判別分析
  4. 4 重回帰分析 4.1 重回帰式とは 4.2 1変数の場合の回帰式 4.3 2変数の回帰分析 4.4 残差分散, 重相関係数 4.5 回帰係数の信頼区間 4.6 多重共線性 4.7 説明変数の選択–逐次法 4.8 説明変数の選択–AIC とCp 4.9 逐次法における規準値とAIC 規準 4.10 主成分回帰 4.11 偏相関係数 4.12 数理的補足–重回帰分析
  5. 5 因子分析 5.1 因子分析とは 5.2 因子分析モデルと回転 5.3 推測法 5.4 白人の手のデータ 5.5 数理的補足–因子分析
  6. 6 正準相関分析 6.1 正準相関とは 6.2 正準相関–成績のデータ 6.3 寄与率と次元 6.4 正準相関分析–歯の咬耗度データ 6.5 正準相関の安定性 6.6 数理的補足–正準相関
  7. A 行列・固有値 A.1 行列 A.2 多変量データと基礎統計量の行列表示 A.3 行列式と逆行列 A.4 固有値・固有ベクトル
  8. B 多変量分布 B.1 身長の分布と正規分布 B.2 2次元正規分布 B.3 数理的補足–多変量正規分布

 

重回帰分析はSPSSでやると一瞬ですが、高価なソフトウェアがなくても無料のpythonやRを使って分析することも比較的簡単にできるようです。実際的な手順を解説したサイトを纏めておきます。

得られた予測式の係数の解釈について:注意点など

  • 回帰係数にはデータ単位があり、目的変数のデータ単位と同じ
  • 回帰係数から『説明変数の目的変数に対する貢献度』がわかります。
  • データ単位が変われば係数の値も変わることを理解してください。したがって、関係式の回帰係数を比較し、値が大きい説明変数ほど目的変数に貢献しているとか重要であるいうことはいえません。重回帰分析では、回帰係数とは別の統計量「標準回帰係数」を算出し、この値を使って売上を予測するのに重要な説明変数のランキング(順番)を把握します。

引用元:多変量解析の手法別解説>重回帰分析(2/3) アイスタット

 

  • 特に注意しないといけない点は,回帰分析は決して因果関係を表しているわけではないということです.従属変数を独立変数で「予測」するのが回帰分析というと,いかにも「独立変数⇒従属変数」という矢印つきの因果関係を想定しがちですが,決して因果関係と断定はできません.あくまで回帰係数は相関関係です.例えば単回帰分析の場合,独立変数と従属変数を入れ替えても,標準化された回帰係数は全く変わらず,しかもその値は普通の単相関係数なのです.
  • 「従属変数の予測力」と「具体的にどの独立変数が従属変数にどのような形で効いているかを理解できること」ということは別問題です.後述するように,偏回帰係数の解釈は独立変数の数が増えるほど困難になります.社会学のように,とにかく社会事象の予測の精度を目的にする場合では,独立変数を増やしてその予測力を高めることには一定の意味があると思いますが,例えば教育心理学研究のように独立変数と従属変数の具体的な関係を吟味し,そのメカニズムを解明したり独立変数を操作して介入に生かしていこうという場合には,多くの独立変数を投入した重回帰分析は結果の解釈が困難で,実質的に無意味になることが多いです.

(重回帰分析について 1.単回帰・重回帰分析における基本的な注意点 koumurayama.com)

  1. 決定係数や標準化偏回帰係数が高いと「影響力が強い」といえるのか?ryotamugiyama.com/
  2. 重回帰分析とは?(手法解析から注意点まで)surveroid.jp

重回帰分析により、従属変数をうまく表現する予測モデル(式)が得られますが、その式に現れる係数(回帰係数や標準化回帰係数)は、予測モデルにおける貢献の度合い、影響の大きさを表しているにすぎず、「原因としての大きさ」と無考えに解釈していいわけではないようです。所詮、単なる数式なので、何を独立変数として、何を従属変数とするかに関しても、別に数学的には制約はないわけで、独立変数を従属変数を入れ替えても(つまり、原因と思っていたことと、結果と思っていたことを入れ替えても)重回帰分析はできてしまうことを考えれば、重回帰分析は因果関係を直ちに教えてくれるものでは決してないということが理解できます。

 

変数の正規化について

偏回帰係数は、どの説明変数がどの程度目的変数に影響を与えているかを直接的には表していません。身長を(cm)で計算した場合と(m)で計算した場合とでは全く影響度の値が異なってしまうことからも明らかです。各変数を平均 0,分散 1 に標準化して求めた「標準偏回帰係数」を用いれば、各説明変数のばらつきの違いによる影響を除去されるので、影響度が算出されます。(重回帰分析とは albert2005.co.jp)

購入額の予測値=5,000+30×(年齢)+300×(性別)+450×(家族人数)+0.001×(年収)

この関係式において、説明変数(属性)が、購入額(目的変数)に対しておよぼす影響の大きさを知りたいということがよくあります。上の関係式では、年齢や年収は単位が違います。したがって年齢の項の偏回帰係数30と年収の項の偏回帰係数0.001は直接比較できません。そこで、あらかじめ説明変数を平均0、分散1に標準化()しておくと、単位が同一の条件下で分析できます。(回帰分析のモデルと基本式 macromill.com)

ダミー変数について

一般線形モデルでは,質的な独立変数(つまり,分散分析の要因)を,(水準数-1)個のダミー変数を使って表す。ダミー変数とは,ある水準に属していることを1で表し,属していないことを0で表す変数のことである。‥ このような(水準数-1)個のダミー変数を独立変数として重回帰分析を行うと,重回帰モデルの有意性検定の自由度,F値,p値が,対応のない1要因分散分析と同じ値になる。回帰式を最小二乗法で推定すれば,予測値は各水準の母平均の最小二乗推定値となる。詳しくは南風原(₂₀₀₂)のpp. ₂₁₆-₂₁₉,₂₇₅-₂₇₆を参照されたい。(統計モデルの違いを理解する 一般線形モデル・一般化線形モデル・階層線形モデル・階層的重回帰モデル The Annual Report of Educational Psychology in Japan₂₀₁₈, Vol. ₅₇, 302-308 PDF

  1. パナレーサー ブチルチューブ 26x1(650C) 仏式(34mm) 【自転車】【ロードレーサーパーツ】【650】 osaka-u.ac.jp

 

pythonを用いた重回帰分析

pandasとscikit-learnを使うと、SPSSでできることがpythonでもあっさりとできるようです。下記のウェブサイトを参考に自分のデータで計算してみたところ、pythonでもSPSSでも同じような結果が得られました。

  1. Pythonで基礎から機械学習 「重回帰分析」 @karaage0703 デフォルトは以下のようです。ややこし過ぎですね。 scikit-learn: 分散  pandas: 不偏分散  numpy: 分散  R言語: 不偏分散 ‥ このように、偏差回帰係数と標準化偏差回帰係数は簡単に変換できるので、正規化しないで重回帰分析をして偏回帰係数を求め、後から必要に応じて標準化偏回帰係数を求める方が計算上は楽です。
  2. 重回帰分析の概要とpython 実装 実践ケモインフォマティクス
  3. scikit-learn で線形回帰 (単回帰分析・重回帰分析) pythondatascience.plavox.info 各変数がどの程度目的変数に影響しているかを確認するには、各変数を正規化 (標準化) し、平均 = 0, 標準偏差 = 1 になるように変換した上で、重回帰分析を行うと偏回帰係数の大小で比較することができるようになります。

 

Rを用いた重回帰分析

  1. 18. 重回帰分析 1 (単回帰と重回帰)takushoku-u.ac.jp

 

論文出版の際のまとめ方

  1. 3.結果のまとめと解釈 rikkyo.ac.jp 分析結果は、学術論文では以下のような形式のにまとめる。図の方が一般向けには分かりやすい。各説明変数の偏回帰係数有意か、モデル全体の説明力はどうか、なぜそのような結果が出たのかなどについて検討し、結果の解釈や考察を行うこと。

 

参考

  1. 12 重回帰分析の使用上の注意 kwansei.ac.jp
  2. 回帰分析を理解しよう!-回帰分析の由来と概念、そして分析結果の評価について- 生活研究部 主任研究員・ヘルスケアリサーチセンター・ジェロントロジー推進室兼任 金 明中 ニッセイ基礎研究所
ズームチョキチルトR採収替刃 アルス 160ZTR-11枚単位 →基本的なタイル系床材の貼り方 舗フロアタイル フロアタイル TODA 東リロイヤルストーン 350円 B18C用メタルヘッドガスケット フロアタイルの必要枚数の詳しい計算方法はこちらgt;gt; モロッコタイル 温度変化でタイルが変形する場合がありますので 新→旧:PST-1399→PMT-1013 1枚単位での販売 グラン 東リ 新旧品番対象 床暖房の上にはご使用いただけません 0.8mm B16A ☆商品の詳細サイズ:45cm×45cm全厚:3mm面取:面取りなし表層透明ビニル層:0.3mm 素材の特性上 画面上の色と実際の商品の色が異なる場合がございます B16B 戸田レーシング ※お客様のパソコンのモニターの設定などによって 壁紙屋本 床暖房対応について 82.5φ ロイヤルストーンbtp BRBN-brass BRBN デザインバーテープ EVA 30mm ブラス 163-00211FLSTCI87年-06年 FLHT99年-07年 408年-17年 FLHTP99年-07年 FXD06年 FXST83年-93年 FLHTCUSE07年 FLHRSE-I207年 FXSTSSE295年-97年 XLNS09年-20年 XLL06年 FXR B16B FLS05年-07年 XL11年-13年 FLTC80年-83年 FXRS82年 XLXS10年-20年 FLHRS04年-06年 FXRS87年 82.5φ FXSTD02年-15年 Special XLH83年-85年 FXS83年-85年 FXSTDI00年-06年 FLHT96年-06年 FXCW12年-15年 FXDWGI10年-17年 Low XLN06年-08年 FXSTSB08年-11年 300年 Hugger FXDS-CONV92年 XLL02年-03年 XLV06年-17年 XLC98年-06年 FXSTSI88年-06年 AV-06121-AR FLSTFSE200年 ハーレー FXWG FLSTFSE06年 1000 FLHTI83年 XLH18年-19年 ベルベットエアー FXDXT14年-17年 グリップ XLC96年-06年 0630-1219AV-06121-ARヤフー XLCP11年-17年 5670円 XLCP05年 AVON FXSB09年 グリップボディの内側のエアポケットを利用します FLHTCUI96年-06年 FXLR04年-09年 FLT96年 FXS13年-15年 883 FLSTSB07年-10年 AIR-93-BOSS FXEF09年-15年 FXCWC07年-10年 Sportster FLHRSE307年 FLHS87年-88年 FLSTC06年 FLHX82年-84年 FXRT86年 Custom SuperLow FLSTSC01年-06年 Forty-Eight 1100 FXDG95年-00年 FLTRSE-I01年 FXSTS01年-12年 FLSTNI05年-06年 JP店 XLH86年-03年 FLTR98年-07年 XLS03年 FXSTDSE04年 XLS02年-03年 FXDL86年-93年 EFI FXDL93年-06年 FLTCU96年 AIR-96-BOSS XLL 3-リング FXSTB93年 XLR96年-03年 XR86年-88年 FXDWG382年-86年 クローム FXSTSSE383年 FXSTI85年-93年 Iron FLSTN01年-07年 B16A スロットルボス付き FLST94年-96年 FLHTCU99年 FLHTCUSE205年 FLSTSI97年-03年 FXDC96年-07年 XLN85年 FLHRS96年-07年 FXDWG202年 FLHTCSE05年 FXSTC05年-15年 XLX83年-84年 JP店02年-19年 FLSTF99年-09年 FLTR98年-06年 FLHTPI84年 FXE05年-14年 エイボン XLR05年-07年 FLSTI86年-90年 FXDSE204年 FLHTC96年-06年 XLR16年-20年 FLHTCSE206年 Seventy-Two XLL05年-06年 FXDSE08年 XLX12年-16年 FXDI95年-06年 FLTCU00年-08年 XLT12年-16年 XLL07年-12年 FLD80年-88年 FXSTBI99年-06年 FLSTF01年-15年 299年 FLSTFB18年-20年 XLR02年-03年 FLHX06年 1200 FXDX01年-03年 FLSTN01年-03年 FXRC90年-93年 XLC06年-11年 FLHTCI82年 XLH07年 FXSTDSE207年 FLSTFI90年-06年 FXDFSE10年 B18C用メタルヘッドガスケット FXRD82年-85年 FXRC85年 FLHX82年 FXDL14年-17年 XL87年-03年 FLSTS01年-09年 FLHRC04年-07年 FXDWG01年 FLHT85年-87年 FXDXI99年-05年 FXR82年-83年 FXST99年-06年 0630-1217ブラック Roadster XLL04年-06年 FXDFSE210年 FLHRSE-I03年 FLHS00年-07年 FXDF85年 FXDB06年-07年 ペアで販売 5088年-03年 FXRS-SP98年-07年 FXDB92年 FLTRSE-I202年 FXSTC86年-99年 TODA FLSTSE09年 XLCX04年-06年 02年-19年 XLH06年-10年 驚くほど柔らかく FLH99年-06年 XL FXD3586年-94年 XLC86年-95年 0.8mm FLSTSCI05年-06年 FXRS-CONV87年-94年 振動を抑えるグリップ FXSTSSE08年 FXRS04年-05年 FXDC04年-10年 Nightster FXDCI05年 FLSTN07年-11年 XLR11年-19年 FLST06年 Sport アメリカ製 FXDWGI93年-06年 XLH07年-09年 戸田レーシング FLHTC82年-84年 FLH83年-88年 FXSB88年-93年 FLHR82年-85年 FLHR94年-06年 DeluxeESCOAC100V/1000W ヒートガン[EA365HC]450.000G :140 手などを切らないように十分にご注意ください お子様の手の届かないところに保管してください 1492円 メーカー 刃の取り扱いには 仕上げ B16B 質量 柄:アルミパイプ 仕様 mm 材質 有 草削 82.5φ B16A 0.8mm 注意 刃幅 除草作業中 頭部:鋼材 戸田レーシング 伸縮式ミニ三角ホー :195 刃長 全長 石などにあたると刃が欠けるおそれがあります TODA B18C用メタルヘッドガスケット 08020 浅野木工所 :880〜1450スーパーファインコンパウンド Holts MH159メーカー及び発売元直送品です B16A お盆 None 営業日前後の出荷予定です 等 お支払い方法 カード決済が終わっている場合は金額訂正させて頂きます 0.8mm 日時指定 お届け日時のご指定等ある場合はご注文の際 アパート名がある場合は必ずご記入ください 必ずお届け先住所のご確認をお願い致します 領収書 注文履歴からお客様による発行が可能です 発売元直送商品の記載がある商品は 実寸外径約110φ 長期不在 PayPay残高払い ドコモ ※当店の取り扱い商品は 日本製 後ほど ご注文後のキャンセル TODA B18C用メタルヘッドガスケット 備考欄にご記入下さい 商品 マンション クレジットカード 約 ほとんどが お届け先地域によってはご希望に添えない場合がございます GW ソフトバンクまとめて支払い 日 ファンネルタイプREDインナーサイレンサー115φ汎用 メーカー 商品発送のタイミング 即日 正確な金額をお知らせ致します また 定休日 土 お届け先住所 1670円 目安を記載しておりますが 戸田レーシング 82.5φ ゴールデンウイーク ケータイ払い ご入金後 送料の自動計算金額が正確でない場合がありますので support.yahoo-net.jp 交換 B16B 変更は出来ません 送料 商品ページに記載の送料が優先します https: または 祝日 年末年始 ページ上に記載の日数は土日祝 お荷物の受け取りについて 住所不備 翌日営業日出荷対応の商品以外は 長期休業を除いた日数となっておりますのでご注意ください H000005938 s PccShopping ※商品を複数カートに入れられた場合 article 受取拒否等で 直送商品について メーカー直送商品の注意事項 のアイコン auかんたん決済 商品が当店へ返送となった場合は往復送料の実費と手数料をご負担して頂きますSALE!20%OFF ショートブーツ レディース レースアップ 厚底 太ヒール 編み上げ レースアップブーツ 歩きやすい ハイヒール 厚底ブーツ備考 B16B 世界トップクラスのライダーたちと共同開発を行い サイズ:34はこちら シートに接地するリアからサイドには強化生地を採用■脚裏にはパンチングメッシュ生地を採用し メーカー名:SHOT ■重量420g JANコード:3701030084769 内容パンツ本体 耐摩耗性バリスティックナイロンパネル B16A 商品名:パンツ 32インチ基準 特徴■重量420g と超軽量■乗車姿勢に合わせてフィットする設計でストレスのない動きを実現■全体的に軽量で耐久性が高いドビー生地を採用■耐熱性 雑誌付き メーカー品番:A0A-11C1-A02-36 高い快適性を誇る■膝上 写真と形状が異なる場合がございます アマチュアライダーからプロレーサーまであらゆる能力を発揮させる製品を目指してきました 股下にかけ柔軟性と軽量性に優れたポリストレッチスパンデックス生地を採用■ウエストにはジャージ位置を保つラバー加工 B18C用メタルヘッドガスケット サイズ:36 サイズ:36メーカー品番:A0A-11C1-A02-36JANコード:3701030084769グレー 9471円 サイズ:30はこちら RACE 最高のコストパフォーマンスとハイエンドなライディングギアの両立を叶えてきたフランスのオフロード用品ブラ… パンツ本体 カラーグレー SLAM ※ジャージは別売りです 常に快適性と性能の向上に努め マイクロバックルを採用■生地に直接浸透させる昇華プリントにてグラフィックをプリント GEAR 82.5φ 0.8mm TODA ショットレースギア SHOT 一部 グレー 写真注意※画像はイメージです 戸田レーシング 最高のコストパフォーマンスとハイエンドなライディングギアの両立を叶えてきたフランスのオフロード用品ブランドSHOT DEVO サイズ:32はこちら パンツトヨタ純正 アルミペダルセット ハリアー 30系B18C用メタルヘッドガスケット 戸田レーシング TODA B16B をお送りした後のお客様都合によるキャンセル 万が一当社原因による商品の欠陥や不良などがあった場合には 返品 商品は弊社女性スタッフが1点1点丁寧に検品して発送しておりますが ご購入頂いてから3日以内に商品代金のお支払いをお願いします 商品到着後3日を過ぎた場合は返品 82.5φ 2548円 弊社から その際は商品到着後 ご注文承諾通知 交換を受け付けさせていただきます 3日以内にご連絡ください 管理番号:bhfd スーパーツール 他サイト等との併用販売を行っているため 交換対象外となりますのでご注意ください 0.8mm KST00 なお スーパーツール 繁忙期のご注文及び海外からの輸入商品は通常以上に発送までお日にち頂く場合がございます ご了承ください 通常ご注文頂いてから1-4営業日で発送させていただきます お支払いがない場合はキャンセルとさせていただきます あらかじめご了承ください 日時指定や急ぎの出荷には対応しておりませんのでご了承下さい 代替品等のご連絡をさせて頂きます 2.4×10×100 識別コード:F446T2W3RO KCT1用 KST00 ギフトラッピング等は承っておりませんのでご了承ください 交換は受け付けておりませんので B16A 商品パッケージについては予告なく変更となる場合がございます カッティングバイト 品切れの場合はキャンセルもしくはお取り寄せ寝袋 シュラフ 封筒型 安い 夏用 車中泊 冬用 コンパクト 収納 洗える キャンプ 子ども 大人 掛け布団 連結可能 防寒 アウトドア 軽量 防災 山 1.45kg ad009カラーはばっちりです 5型 納期について 6型 受注後のキャンセルはお受けできませんので B16B ※ハイエースダブルモニターのモニターの保証期間は 15300円 7インチモニター付ダブルモニターキット 本製品は受注生産品の為 B16A 0.8mm カーナビの案内を出しながらDVDやテレビを見ることができるので同乗者も大喜び サイドカメラを映すと 取扱説明書 有料となります 6型に対応 スイッチは両面テープで貼り付けるタイプです 82.5φ 狭い路地や車庫入れも安心です フィッティング HIACE ナビとは別にモニターが付くことで 200系ハイエースワイドボディ2013年12月〜 商品説明 ブラック 特別仕様車ダークプライム仕様 4 200系ハイエース 品質 B18C用メタルヘッドガスケット お急ぎの方はご注文前に納期お問い合わせ下さい ハイエースワイド用7インチモニター付パネル 戸田レーシング 予めご了承下さい それ以降の交換につきましては 適合車種 パネルカラー 純正部品の為 5 セット内容 TOYOTA 1週間〜1ヶ月程の納期予定です フロントカメラ 予めご了承ください ご購入日から6か月間となります モニター用電源スイッチ TODA 黒木目マホガニー調加飾 200系ハイエース 7インチモニターとパネルのセットです 純正部品加工済み品 ワイドボディ専用 4型カワイワークス エッセ L235S L245S用 リアピラーバー スクエアタイプ ※注意事項要確認マルチ密着プライマー m2 メーカー品 TODA mail: ヤフーショッピングのお問い合わせとお伝えください 東京都目黒区 中目黒2-8-22 B18C用メタルヘッドガスケット B16B テロソン Teroson お問い合わせはメールでお願いいたします B16A 03-6712-2037FAX : 03-3712-7834 80g 戸田レーシング 通常 2596円 4L缶PPバンパー 染めQテクノロジィ colorbucks@ap.wakwak.com TEL ミッチャクロンマルチ アルミなど難塗着剤に使う密着剤塗布量:約60 中目黒TDビル一階 Colorbucks有限会社 窓口営業時間: 平日9:00~12:0013:00~17:00 ※土日祝祭日とその翌日はお休みとなります 〒153-0061 82.5φ 0.8mm 3.7L お問合せ先 ミッチャクロン 染めQテクノロジィ 旧テロソン

男か女かといった質的変数は、重回帰分析の独立変数に用いるときには、ダミー変数として取り扱います。性別という「アイテム」において、「男」というカテゴリー変数は1か0の値を通り、男なら1、男でなければ0とします。同様に、「女」というカテゴリー変数は1か0の値をとり女なら1、女でなければ0になります。ある人に関して、性別のアイテムの行は、カテゴリー変数男とカテゴリー変数女の和は1になるわけです。カテゴリー変数が複数の場合も、同様に和は1になります。例えば「曜日」という「アイテム」で、カテゴリー変数「月曜日」は1か0、「火曜日」も1か0という具合です。あるデータに関しては、いずれかの曜日なのでどれかの曜日が1で他の曜日が0とい値になっており、和は1です。こうして作ったダミー変数を重回帰分析の独立変数として用いればよいわけです。ただし、独立変数は独立であってほしいわけですが、こうやってつくったダミー変数は明らかに「カテゴリー変数の数―1」個のカテゴリーが決まれば、残りの一個は決まってしまいます(和が1になるようにつくったので)ので、ひとつのカテゴリー変数は除去しておく必要があります。

ダミー変数の作り方と作る際の注意

あるアイテム変数の持つ情報をダミー変数で表現するとき、アイテム変数がk個のカテゴリーを持つ場合には、0か1かのいずれかを持つ二値データk個のダミー変数に展開される。例えば、あるアイテム変数がiという値を持つ場合、i番目のダミー変数は値1を持ち、残りのダミー変数は値0を持つ。表1に示したデータ中の3つのアイテム変数のデータは、表2のように、延べ9個のダミー変数(D11,…,D33)に展開されるしかし、このダミー変数は冗長な情報を持つ。例えば、k−1個のダミー変数が0であるとき、残りの1個のダミー変数は必ず1である。そこで、多変量解析においては、各アイテム変数に対応する複数のダミー変数のうちの1つを除いて解析に使用する。どのダミー変数を除いてもよい(数量化 I 類はダミー変数を用いた重回帰分析である 青木繁伸 2005 年 10 月 17 日)

下のB表はカテゴリーデータを1,0の数量データに変換したものです。‥ このデータは、曜日の7列のデータを合計すると、どの日も1となります。(天候、巨人勝敗、競馬についても同様です。)そこで、4項目からそれぞれ任意の1列を削除します。この例では、曜日は土、天候は雨、巨人勝敗は無、競馬は無の最後の列を削除しました。(《数量化1類(2/3) 》 カテゴリースコアの求め方 アイスタット)

ダミー変数は「1か0(ゼロ)」の2つの値しかとりません。「1」は「○○である」、「0」は「○○でない」ということを表します。「○○」を「合格」とすれば「1=合格/0=不合格」、「不合格」とすれば「1=不合格/0=合格」ということになります。(ロジスティック回帰分析(4)─ダミー変数 統計WEB)

カテゴリーが k種類あれば,k-1個のダミー変数を用意する。上の例でダミー変数を一個だけ用意して,鉄骨=0,軽量鉄骨=1,木造=2のようにしてはいけない。(アパートの家賃(2) ダミー変数を用いた重回帰分析 cuc.ac.jp)

データ: 従属変数と独立変数は量的でなければなりません。宗教、専攻、居住地区などのカテゴリー変数は、2 値 (ダミー) 変数またはその他の種類の対比変数として再割り当てする必要があります。(IBM SPSS Statistics Base 26

3カテゴリーの時に、ダミー変数を3つ作らないように注意。(分析実習資料 2021/06/ SPSSによる重回帰分析 村瀬 洋一)

https://geolog.mydns.jp/www.geocities.jp//databooster2/mydoc/sreg-qt1.pdf

SPSSを用いた解析

具体的な例が説明されている本としては、内田治著『SPSSによる回帰分析』(オーム社 平成25年8月23日第1版)があります。第4章 質的変数とダミー変数 としてかなりのページ数を割いて実際に適用した例が示されています。

『SPSSによる回帰分析』目次

  1. 第1章 回帰分析入門 1.1 回帰分析の概要 回帰分析とは 回帰分析の用語 回帰分析の用途 1.2 回帰分析におけるデータ データの種類 測定の尺度 変数の種類
  2. 第2章 単回帰分析 2.1 単回帰分析の基本 例題1 回帰式 回帰式の有意性 回帰式の有効性 母回帰係数の信頼区間 2.2 残差の検討 個々の残差 残差のヒストグラム 標準化残差の正規確率プロット 2.3 区間推定 母回帰式の信頼区間 個々のデータの予測区間 2.4 SPSS の手順 単回帰分析 散布図
  3. 第3章 重回帰分析 3.1 重回帰分析における予備的解析 例題2 3.1.1 1変数の解析 要約統計量 データのグラフ化 3.1.2 2変数の解析 相関行列 散布図行列 3.1.3 説明変数ごとの単回帰分析 x1による単回帰分析 x2による単回帰分析 x3による単回帰分析 x4による単回帰分析 単回帰分析のまとめ 3.2 重回帰分析の実際 3.2.1 重回帰分析の基本 回帰式 回帰式の有意性 回帰式の有効性 回帰係数の有意性 標準偏回帰係数 3.2.2 残差の検討 個々の残差 残差のヒストグラム 3.2.3 回帰診断 てこ比 Cook の距離 DfBeta 3.2.4 相互検証法とリサンプリング法(1)予測精度の検証 Hold out 法 K-fold 法 Leave-One-Out 法(2)回帰係数の検証 Jackknife 法 Bootstrap 法 3.3 SPSS の手順 要約統計量 ヒストグラム・箱ひげ図・幹葉図 ドットプロット 相関行列 散布図行列 3次元散布図 単回帰分析 重回帰分析 回帰診断 Bootstrap法
  4. 第4章 質的変数とダミー変数 4.1 質的変数を含んだ回帰分析 例題3 データのグラフ化 4.1.1 質的変数とダミー変数 4.1.2 ダミー変数の使い方 数値例1 数値例2 数値例3 4.1.3 カテゴリの数が3 つ以上のダミー変数 4.1.4 ダミー変数の作成 4.2 数量化理論Ⅰ類と共分散分析 4.2.1 数量化理論Ⅰ類 例題4 4.2.2 一般線形モデル 4.2.3 共分散分析 例題5 質的変数を含んだ重回帰分析 データのグラフ化 ダミー変数による重回帰分析の結果 共分散分析の結果 4.3 SPSS手順
  5. 第5章 回帰分析における説明変数の選択 5.1 変数選択の方法 5.1.1 変数選択の必要性 重要な変数と不要な変数 良い回帰式 説明変数の選択方法 変数選択の基準 5.1.2 ステップワイズ法 例題6 変数選択基準の設定 ステップワイズ法の結果 5.1.3 ベストサブセット法 5.2 説明変数の組合せで生じる問題 5.2.1 多重共線性 多重共線性とは 許容度 VIF 例題7 説明変数同士の相関行列 説明変数ごとの単回帰分析 回帰係数の符号逆転 5.2.2 解の一意性 例題8 5.2.3 欠損値の扱い 例題9 リストごとに除外した解析結果 ペアごとに除外した解析結果 平均値で置き換えた解析結果 5.3 SPSS の手順 重回帰分析(ステップワイズ法) ベストサブセット法
  6. 第6章 ロジスティック回帰分析 6.1 ロジスティック回帰の基本 6.1.1 ロジスティック回帰とは 例題10 ロジスティック回帰の概念 データのグラフ化 ロジスティック回帰の結果 6.1.2 完全分離 例題11 6.1.3 SPSS の手順 6.2 ロジスティック回帰の実践 6.2.1 多重ロジスティック回帰 ロジスティック回帰の種類 例題12 ロジスティック回帰の結果 データのグラフ化 ロジスティック回帰の結果 6.2.2 変数選択 変数選択の方法 変数選択の結果 6.3 SPSS の手順 ロジスティック回帰 ロジスティック回帰(尤度比による変数減少法)
  7. 第7章 生存分析とCox 回帰 7.1 生存分析 7.1.1 Kaplan- Meier 法による生存率曲線 例題13 生存分析とは 生存率 生存率曲線 7.1.2 生存率曲線の比較と検定 例題14 2つの生存率の違いに関する検定 ログランク検定の結果 7.2 Cox 回帰 7.2.1 比例ハザードモデル 例題15 比例ハザードモデル Cox回帰の結果 7.2.2 複数の説明変数を含むCox 回帰 例題16 複数の説明変数 7.3 SPSS の手順 Kaplan- Meier 法による生存率曲線の作成 ログランク検定 Cox 回帰 複数の説明変数を含むCox 回帰
  8. 第8章 パス解析と因果分析 8.1 因果関係の解析 8.1.1 説明変数間の因果関係 因果関係の整理 8.1.2 パス解析の概念 パス図 パス解析 8.2 パス解析の実際 8.2.1 回帰分析を用いたパス解析 x1を説明変数、x2を目的変数とする回帰分析 x1を説明変数、x3を目的変数とする回帰分析 x2とx3を説明変数、x4を目的変数とする回帰分析 x4を説明変数、yを目的変数とする回帰分析 8.2.2 共分散構造分析を用いたパス解析 共分散構造分析 AMOS による解析結果

参考

  1. SPSSにおけるカテゴリー変数のとりあつかい 2012年
  2. 04. 重回帰分析 京都大学 加納 学

SPSSなどの統計ソフトを用いると重回帰分析を行うこと自体は非常に簡単です。エクセルで独立変数や従属変数をまとめておいて、SPSSでそのエクセルファイルを読み込み、どの列が従属変数でどの列が独立変数かを選べば、ワンクリック、一瞬で分析が終わります。しかし難しいのは、結果の解釈です。

  1. 多変量解析の手法別解説 > 重回帰分析 アイスタット

予測」は,重回帰分析の目的の一つであり,そこでの変量間の関係は回帰関係である.ただし,それが因果関係となるかどうかには注意深い考察が必要となる.得られた回帰式y=a+bxにおいて,b >0のとき『xが1単位大きければyが平均的にbだけ大きい』という解釈は妥当であるが,それは『xを1単位大きくすればyは平均的にbだけ大きくなる』ことを一般に意味しない.その解釈が成立するためには因果関係が必要となる (統計的因果推論の視点による重回帰分析 岩崎 学 日本統計学会誌第50巻,第2号, 2021年3月 363頁ー379頁

偏回帰係数とは:解釈する際の注意点 

他の独立変数を一定にした上で,x1を動かしてみたらyがどう変わるか」という,x1からyへの直接的な効果を示しているのが偏回帰係数です.(重回帰分析について 1.単回帰・重回帰分析における基本的な注意点 koumurayama.com)

(標準)偏回帰係数は,「他の独立変数から当該の独立変数を予測する回帰分析における残差」と「従属変数(ないし,他の独立変数から従属変数を予測する回帰分析における残差)」の関係を示すものであり,「当該の独立変数そのもの」と「従属変数」の関係を示しているものではない。すなわち,偏回帰係数は,当該の独立変数を「他の独立変数から説明される成分」と「説明されない(他の独立変数とは無相関であるために,一般に『独自なものである』という言葉で表現されている)残りの成分」に直交分解したときの後者の成分の従属変数との関係を示すものであり,後者の成分に関する値は,「他の独立変数の値を一定に統制したときの当該の独立変数の値」と言えるものであるとともに,「各対象の当該の独立変数の値が『他の独立変数の値のわりに』どの程度大きいか,または,小さいか」ということを意味しているものである(ただし,これは「変数間の関係が線形であるとともに,独立変数同士の交互作用効果が存在していない」という前提のもとでのことである)。(心理学的研究における重回帰分析の適用に関わる諸問題 心理学研究2021年

重回帰分析における多重共線性の問題

多重共線性に注意するために、回帰分析を行う際には、まず説明変数間の相関行列を見て、相関がとても強いものがあれば、片方は説明変数から除く、といったことが必要である。(分析実習資料2015/6SPSSによる重回帰分析村瀬洋一)

  1. 多変量解析の前に相関行列を見よう 2019年3月21日 投稿者: ADMIN muscle-hypertrophy.com 「分析」→「相関」→「2変量…」を選択

因果関係について

重回帰分析では、従属変数を独立変数を含む数式で表すので、あたかもそこに因果関係があるかのように感じる人もいると思います。しかし、この数式の意味するところは、あくまで、従属変数がこの数式によってうまく表現できるというだけのことです。因果関係を示すものではありません。

  1. 心理データ解析 第6回(1) 多変量解析とは 「因果関係がある」というためには少なくとも以下の3点を満たす必要がある 1独立変数(説明変数)が従属変数(基準変数)よりも時間的に先行していること 2理論的な観点からも因果の関係に必然性と整合性があること 3他の変数の影響をのぞいても,2つの変数の間に共変関係があること

参考

  1. 重回帰分析 日経リサーチ 重回帰分析の結果を得たら、そのまま鵜呑みにして直ちに結果の解釈をするのではなく、重回帰モデルが適切か否かを、まず評価する。統計ソフトウエアには以下のような評価指標も出力される。
  2. 人事データ活用入門 第4回 因果関係を分析する一手法「回帰分析」とは リクルートマネージメントソリューションズ
  3. SPSSで回帰分析を実施する方法!結果が有意でない場合の解釈は いちばんやさしい、医療統計
  4. 読めば納得。重回帰分析で失敗しがちな事例10|マーケティングと重回帰分析 − その3 ADVA MAGELLAN 2021年3月23日
  5. アパートの家賃(2)ダミー変数を用いた重回帰分析 cuc.ac.jp

 

複数の要因(独立変数)で、「結果」がどのように説明できるかを調べる手法が重回帰分析ですが、重回帰分析においては、個々の独立変数が互いに影響しあっていない(多重共線性が無い)ことが必要です。しかし多くの場合には、互いに影響しあっているため、それを考慮できる方法としてパス解析があります。パス解析では観測できる量だけからなる独立変数、従属変数の関係性を調べますが、さらには、直接には観測できない量(例えば、性格の朗らかさ)も想定した関係性を調べたい場合に、共分散構造分析が使われます。

共分散構造分析という言葉は、構造方程式モデリング(Structural equation modeling; SEM)とほぼ同義に使われているようです。共分散分析(ANCOVA)は共分散構造分析と名前が似ていて紛らわしいですが別物のようです。

  1. 共分散構造分析の基礎と実際—-基礎編—-狩野 裕(大阪大学大学院人間学研究科 2002年11月11日SSJデータ・アーカイブ  第66回公開セミナー: StructuralEquationModeling構造方程式モデル(モデリング)–近年は共分散構造分析よりもメジャーな名称

共分散構造分析とは

共分散構造分析とは、わかりやすく言うと、直接観測できない「潜在変数」を導入し、導入した潜在変数と観測変数との間の因果関係を同定する統計学的手法のことです。

  1. 共分散構造分析の基礎と実際—-基礎編—- SSJデータ・アーカイブ第6回公開セミナー 2002年年11月月11日
  2. 共分散構造分析の基礎と実際—-応用編—- 狩野 裕(大阪大学大学院人間学研究科)
  3. 共分散構造分析 多変量解析の手法別解説 統計分析研究所アイスタット

共分散構造分析と重回帰分析との違い

単回帰分析、重回帰分析、パス解析、共分散構造分析(SEM)の違いは、下のサイトの図がわかりやすい。

  1. 単回帰分析・重回帰分析・共分散構造分析とパス解析 GMORESEARCH

従属変数(結果)が1個、独立変数(要因)が1個でそれらの関係を調べるのが単回帰分析。要因が複数、つまり独立変数が複数あってそれらと従属変数との関係を調べるのが重回帰分析。独立変数同士にも関連性があることを想定した解析手法が、パス解析。測定可能ではない量「潜在変数」まで考えて関連性を調べることができるのが共分散構造分析ということになります。

共分散構造分析におけるパス解析(パス図)とは

  1. パス解析 日経リサーチ
  2. 顧客理解を可能とするパス解析|因果関係を徹底的に探る KOTODORI
  3. 分析2:調在データの分析 人工知能学会誌21巻5号(2006年9月

構造方程式モデリングとは

  1. SEMは心理学に何をもたらしたか? The Annual Report of Educational Psychology in Japan2020, Vol. 59, 292-303 ・時流に乗った,数学的には高度な新しい分析法を使った,脱常識性が感じられない研究,データと大きく乖離した主張をしている研究の量産 ・時流に乗った,数学的には高度な新しい分析法を使った研究が優れた研究であるという思い込み(?)の蔓延 ・データの収集法に関して工夫をして,脱常識性の高い因果関係を提示しようとする姿勢の阻害・相関と因果,測定の妥当性,相関的研究における変動因の問題などの,心理学にとって基本的で非常に重要なことを踏まえない傾向の助長
  2. 製品開発のためのマーケティングリサーチへの構造方程式モデリングの応用
  3. SEMによる因果分析入門–パス解析から傾向スコアまで– 大阪大学 大学院基礎工学研究科 狩野 裕
  4. 産後の抑うつ状態の複雑な予測

共分散構造分析の手順

SPSSによる共分散構造分析

Rによる共分散構造分析

『共分散構造分析 R編』

pythonによる共分散構造分析

エクセルによる共分散構造分析

共分散構造分析の教科書

『共分散構造分析 入門編』

『共分散構造分析 応用編』

『共分散構造分析 疑問編』

SPSSとAmosによる心理・調査データ解析

小塩真司『SPSSとAmosによる心理・調査データ解析 : 因子分析・共分散構造分析まで』第3版  東京図書, 2018.

図解でわかる共分散構造分析

涌井良幸, 涌井貞美『図解でわかる共分散構造分析 : データから「真の原因」を探り出す新しい統計分析ツール』日本実業出版社, 2003.

 

参考

  1. 統計分析法の分類  予測・説明関係を検討する統計的検定法の分類 予測・説明関係を検討する多変量データ解析法の分類
  2. 看護学における多変量解析の利用―国内文献の検討結果から― 飯島 純夫
  3. 高等教育研究のための計量手法の整理 中尾走、樊怡舟 広島大学大学院教育学研究科 広島大学高等教育研究開発センター(RIHE)では,大学教員に対する調査がこれまで何度も行われており,研究生産性というテーマで大学教員の論文数を従属変数にして分析
  4. 構造方程式モデリングは,因子分析,分散分析,パス解析のすべてにとって代わるのか? 狩野 裕 行動計量学 第29巻第 2号 (通巻57号)2002年,138~159
  5. 「討論:共分散構造分析」の特集にあたって 豊田秀樹  行動計量学 第29巻第 2号 (通巻57号)2002年,135~137

 

 

医療統計ソフトは無料のもの(Rなど)から非常に高価なものまで(SPSSなど)いろいろありますが、医学研究の分野ではSPSS(IBM社)が定番のようです。SPSSの使い方に関する教科書・書籍が多数ありますので、まとめておきます。

 

SPSSによる回帰分析

内田 治『SPSSによる回帰分析』(オーム社 2013年8月23日 )

  1. 第1章 回帰分析入門 ◇1.1 回帰分析の概要 ■回帰分析とは ■回帰分析の用語 ■回帰分析の用途 ◇1.2 回帰分析におけるデータ ■データの種類 ■測定の尺度 ■変数の種類
  2. 第2章 単回帰分析 ◇2.1 単回帰分析の基本 ■例題1 ■回帰式 ■回帰式の有意性 ■回帰式の有効性 ■母回帰係数の信頼区間 ◇2.2 残差の検討 ■個々の残差 ■残差のヒストグラム ■標準化残差の正規確率プロット ◇2.3 区間推定 ■母回帰式の信頼区間 ■個々のデータの予測区間 ◇2.4 SPSS の手順 ■単回帰分析 ■散布図
  3. 第3章 重回帰分析 ◇3.1 重回帰分析における予備的解析 ■例題2 ○3.1.1 1変数の解析 ■要約統計量 ■データのグラフ化 ○3.1.2 2変数の解析 ■相関行列 ■散布図行列 ○3.1.3 説明変数ごとの単回帰分析 ■x1による単回帰分析 ■x2による単回帰分析 ■x3による単回帰分析 ■x4による単回帰分析 ■単回帰分析のまとめ ◇3.2 重回帰分析の実際 ○3.2.1 重回帰分析の基本 ■回帰式 ■回帰式の有意性 ■回帰式の有効性 ■回帰係数の有意性 ■標準偏回帰係数 ○3.2.2 残差の検討 ■個々の残差 ■残差のヒストグラム ○3.2.3 回帰診断 ■てこ比 ■Cook の距離 ■DfBeta ○3.2.4 相互検証法とリサンプリング法 (1)予測精度の検証 ■Hold out 法 ■K-fold 法 ■Leave-One-Out 法 (2)回帰係数の検証 ■Jackknife 法 ■Bootstrap 法 ◇3.3 SPSS の手順 ■要約統計量 ■ヒストグラム・箱ひげ図・幹葉図 ■ドットプロット ■相関行列 ■散布図行列 ■3次元散布図 ■単回帰分析 ■重回帰分析 ■回帰診断 ■Bootstrap法
  4. 第4章 質的変数とダミー変数 ◇4.1 質的変数を含んだ回帰分析 ■例題3 ■データのグラフ化 ○4.1.1 質的変数とダミー変数 ○4.1.2 ダミー変数の使い方 ■数値例1 ■数値例2 ■数値例3 ○4.1.3 カテゴリの数が3 つ以上のダミー変数 ○4.1.4 ダミー変数の作成 ◇4.2 数量化理論Ⅰ類と共分散分析 ○4.2.1 数量化理論Ⅰ類 ■例題4 ○4.2.2 一般線形モデル ○4.2.3 共分散分析 ■例題5 ■質的変数を含んだ重回帰分析 ■データのグラフ化 ■ダミー変数による重回帰分析の結果 ■共分散分析の結果 ◇4.3 SPSS手順
  5. 第5章 回帰分析における説明変数の選択 ◇5.1 変数選択の方法 ○5.1.1 変数選択の必要性 ■重要な変数と不要な変数 ■良い回帰式 ■説明変数の選択方法 ■変数選択の基準 ○5.1.2 ステップワイズ法 ■例題6 ■変数選択基準の設定 ■ステップワイズ法の結果 ○5.1.3 ベストサブセット法 ◇5.2 説明変数の組合せで生じる問題 ○5.2.1 多重共線性 ■多重共線性とは ■許容度 ■VIF ■例題7 ■説明変数同士の相関行列 ■説明変数ごとの単回帰分析 ■回帰係数の符号逆転 ○5.2.2 解の一意性 ■例題8 ○5.2.3 欠損値の扱い ■例題9 ■リストごとに除外した解析結果 ■ペアごとに除外した解析結果 ■平均値で置き換えた解析結果 ◇5.3 SPSS の手順 ■重回帰分析(ステップワイズ法) ■ベストサブセット法
  6. 第6章 ロジスティック回帰分析 ◇6.1 ロジスティック回帰の基本 ○6.1.1 ロジスティック回帰とは ■例題10 ■ロジスティック回帰の概念 ■データのグラフ化 ■ロジスティック回帰の結果 ○6.1.2 完全分離 ■例題11 ○6.1.3 SPSS の手順 ◇6.2 ロジスティック回帰の実践 ○6.2.1 多重ロジスティック回帰 ■ロジスティック回帰の種類 ■例題12 ■ロジスティック回帰の結果 ■データのグラフ化 ■ロジスティック回帰の結果 ○6.2.2 変数選択 ■変数選択の方法 ■変数選択の結果 ◇6.3 SPSS の手順 ■ロジスティック回帰 ■ロジスティック回帰(尤度比による変数減少法)
  7. 第7章 生存分析とCox 回帰 ◇7.1 生存分析 ○7.1.1 Kaplan- Meier 法による生存率曲線 ■例題13 ■生存分析とは ■生存率 ■生存率曲線 ○7.1.2 生存率曲線の比較と検定 ■例題14 ■2つの生存率の違いに関する検定 ■ログランク検定の結果 ◇7.2 Cox 回帰 ○7.2.1 比例ハザードモデル ■例題15 ■比例ハザードモデル ■Cox回帰の結果 ○7.2.2 複数の説明変数を含むCox 回帰 ■例題16 ■複数の説明変数 ◇7.3 SPSS の手順 ■Kaplan- Meier 法による生存率曲線の作成 ■ログランク検定 ■Cox 回帰 ■複数の説明変数を含むCox 回帰
  8. 第8章 パス解析と因果分析 ◇8.1 因果関係の解析 ○8.1.1 説明変数間の因果関係 ■因果関係の整理 ○8.1.2 パス解析の概念 ■パス図 ■パス解析 ◇8.2 パス解析の実際 ○8.2.1 回帰分析を用いたパス解析 ■x1を説明変数、x2を目的変数とする回帰分析 ■x1を説明変数、x3を目的変数とする回帰分析 ■x2とx3を説明変数、x4を目的変数とする回帰分析 ■x4を説明変数、yを目的変数とする回帰分析 ○8.2.2 共分散構造分析を用いたパス解析 ■共分散構造分析AMOS による解析結果
  9. 付録 ◇付録(1) 一般化線形モデル ◇付録(2) 曲線回帰 ◇付録(3) 回帰木と分類木 ■決定木 ■回帰木の例 ■分類木の例 ◇付録(4) 多重共線性の診断 ◇付録(5) ケースの数と説明変数の数

SPSSを使って重回帰分析をやりたければ、実際的な手順の説明などはこの本が一番詳細だと思います。数式による説明はほとんどないので、そういう説明が苦手な人には読みやすい。

参考

  1. 本書のウェブサイト(データダウンロードサイト
  2. 著者ウェブサイト:内田治 准教授 教員情報 東京情報大学 

 

SPSSによる統計データ解析

柳井 晴夫, 緒方 裕光 編著 改訂新版『SPSSによる統計データ解析 医学・看護学、生物学、心理学の例題による統計学入門』April 1, 2006 現代数学社

  1. 第1章 SPSSの基本的使い方 1.1 データファイルの作成手法 1.2 データの加工(椎名久美子)
  2. 第2章 データの要約 2.1 度数分布表 2.2 単純集計のグラフ表現 2.3 代表値と散らばりの指標 2.4 クロス集計表とグラフ表現 2.5 相関係数 2.6 層別の分析(椎名久美子)
  3. 第3章 統計的推論 3.1 平均値についての推論 3.2 分散についての推論 3.3 相関係数についての推論 3.4 分割表についての推論 3.5 比率についての推論(石井秀宗)
  4. 第4章 分散分析 4.1 一元配置分散分析 4.2 多重比較 4.3 多元配置分散分析(緒方祐光)
  5. 第5章 回帰分析 5.1 単回帰分析 5.2 重回帰分析(佐伯圭一郎)
  6. 第6章 測定の信頼性と妥当性 6.1 測定の信頼性 6.2 測定の妥当性(石井秀宗)
  7. 第7章 主成分分析 7.1 主成分分析の概要 7.2 相関行列に基づく主成分分析 7.3 分散共分散行列に基づく主成分分析 7.4 主成分分析による多変量外れ値の検出(伊藤圭)
  8. 第8章 因子分析 8.1 因子分析の概要 8.2 因子の抽出 8.3 因子の回転 8.4 その他の分析(西川浩昭)
  9. 第9章 クラスター分析 9.1 ケースのクラスタリング 9.2 変数のクラスタリング(西川浩昭)
  10. 第10章 判別分析 10.1 判別分析の概要 10.2 解析例1(3グループの場合) 10.3 解析例2(2グループの場合) 10.4 判別分析に関するその他の問題(Q&A)(林篤裕)
  11. 第11章 ロジスティック回帰分析 11.1 2項ロジスティック回帰 11.2 多項ロジスティック回帰(緒方祐光)
  12. 第12章 対数線形モデル 12.1 基本モデル 12.2 ロジット対数線形モデル(緒方祐光)
  13. 第13章 生存時間データの解析 13.1 生命表 13.2 カプラン・マイヤー法 13.3 比例ハザードモデル(吉本泰彦)
  14. 第14章 さらに進んだ分析法ー多変量解析法を中心としてー(柳井晴夫)

数学書の出版で定評のある現代数学社から出ているSPSSを用いた統計解析の解説書。初版が2006年ですから、信頼のおけるロングセラーです。SPSSがどんどんバージョンアップしているのでそれに合わせるために改訂版が出たそうです。

SPSSのメニューのド個をクリックしてみたいな実際的な手順がある一方で、極めて簡潔ながら理屈に関する説明も多少あって、バランスが良いスタイル。

 

SPSSで学ぶ医療系データ解析

対馬 栄輝『SPSSで学ぶ医療系データ解析 第2版』December 7, 2016 東京図書

  1. 第1章 データの設定 §1.1 データ入力の方法 §1.2 値ラベルの設定:数値データを日本語表示する
  2. 第2章 データ解析の基本事項 §2.1 データとは §2.2 標本と母集団 §2.3 データの尺度 §2.4 データ縮約のための記述統計量 §2.5 データの分布(確率分布) §2.6 標本分布 §2.7 信頼区間(区間推定) §2.8 SPSSによる記述統計量 §2.9 グラフ
  3. 第3章 統計的検定の基礎 §3.1 統計的仮説とは §3.2 統計的「有意」とは §3.3 第I 種の誤り, 第II 種の誤り §3.4 両側検定, 片側検定 §3.5 パラメトリック検定とノンパラメトリック検定 §3.6 パラメトリック検定,ノンパラメトリック検定の選択法 §3.7 SPSSによるShapiro-Wilk検定
  4. 第4章 検定の選択方法 §4.1 標本の数の数え方 §4.2 データどうしの差を検定したい(2つまでのデータの差) §4.3 データ列どうしの関連性を見たい §4.4 名義尺度データの頻度の偏りや関連度を見たい §4.5 3 つ以上の標本・変数の差をみたい §4.6 測定の信頼性を知りたい
  5. 第5章 差の検定 §5.1 差の検定とは §5.2 平均に関する検定(パラメトリックな法) §5.3 分布中心の差に関する検定(ノンパラメトリックな手法) §5.4 差の検定における注意事項
  6. 第6章 相関・回帰分析 §6.1 相関とは §6.2 回帰分析とは §6.3 相関と回帰分析における注意事項 §6.4 相関における注意点 §6.5 回帰分析における注意点
  7. 第7章 分割表の検定 §7.1 分割表の検定とは §7.2 連関係数とは §7.3 リスク比オッズ比 §7.4 Mantel-Haenszel推定量 §7.5 分割表検定における注意事項
  8. 第8章 1元配置分散分析 §8.1 分散分析とは §8.2 t検定のくり返しによる検定多重性の問題 §8.3 1元配置分散分析(パラメトリックな手法) §8.4 Kruskal-Wallis検定(ノンパラメトリックな手法) §8.5 分散分析における注意事項
  9. 第9章 多重比較法 §9.1 多重比較法とは §9.2 パラメトリックな手法(等分散性が仮定できるとき) §9.3 パラメトリックな手法(等分散性が仮定できないとき) §9.4 SPSSによる多重比較法 §9.5 ノンパラメトリックな手法 §9.6 多重比較法における注意事項 §9.7 多重比較法の手法選択
  10. 第10章 2元配置分散分析 §10.1 2元配置分散分析とは §10.2 交互作用 §10.3 要因について §10.4 SPSSによる2元配置分散分析(くり返しのある) §10.5 2元配置分散分析結果の読み方 §10.6 交互作用が有意であったときの対応 §10.7 SPSSによる2元配置分散分析(くり返しのない) §10.8 実験計画 §10.9 2元配置分散分析における注意事項
  11. 第11章 反復測定による分散分析 §11.1 反復測定による分散分析とは §11.2 SPSSによる反復測定による分散分析 §11.3 Friedman検定(ノンパラメトリックな手法) §11.4 元配置以上の分散分析と反復測定による分散分析の関係 §11.5 反復測定による分散分析における注意事項
  12. 第12章 検者間・検者内信頼性係数 §12.1 級内相関係数(ICC)とは §12.2 級内相関係数(ICC)の基礎理論 §12.3 級内相関係数(パラメトリックな手法) §12.4 SPSSによる級内相関係数 §12.5 カッパ係数とは(ノンパラメトリックな手法) §12.6 SPSSによるカッパ係数 §12.7 検者間・検者内信頼性係数における注意事項
  13. 第13章 重回帰分析 §13.1 重回帰分析とは §13.2 重回帰式を作るための基礎知識(変数選択の手順) §13.3 重回帰分析の結果を判定する指標 §13.4 モデルの適合度評価 §13.5 SPSSによる重回帰分析 §13.6 重回帰分析の結果の読み方 §13.7 重回帰分析における注意事項 §13.8 関連するその他の手法
  14. 第14章 多重ロジスティック回帰分析 §14.1 多重ロジスティック回帰分析とは §14.2 解析のしくみ §14.3 変数選択の方法 §14.4 多重ロジスティック回帰分析の結果を判定する指標 §14.5 モデルの適合度評価 §14.6 変数の加工 §14.7 SPSSによる多重ロジスティック回帰 §14.8 多重ロジスティック回帰分析における注意事項と類似手法の紹介

この本は、実験で頻出する「反復測定」のデータの解析に関してひとつの章を割いて説明していて、自分には役立ちました。よくある実験デザインなのに、その解析方法に関して十分な紙面を割いた本は意外と少ないため。

参考

  1. 著者ウェブサイト:対馬栄輝研究室 弘前大学 医学部 保健学科 理学療法学専攻 著者略歴:弘前大学医療技術短期大学部理学療法学科(保健衛生学士)、弘前大学 大学院 理学研究科 (修士課程)、弘前大学大学院 医学研究科 社会医学系 公衆衛生学講座(博士課程)、弘前大学大学院保健学研究科(教授)

 

SPSSとAmosによる心理・調査データ解析

小塩真司『SPSSとAmosによる心理・調査データ解析 : 因子分析・共分散構造分析まで 第3版 』東京図書, 2018.

  1. 第1章 データ解析の基本事項――データの形式,入力と代表値
  2. 第2章 相関と相関係数――データの関連を見る
  3. 第3章 χ2検定・t 検定――2変数の相違を見る
  4. 第4章 分散分析――3変数以上の相違の検討
  5. 第5章 重回帰分析――連続変数間の因果関係
  6. 第6章 因子分析――潜在因子からの影響を探る
  7. 第7章 因子分析を使いこなす――尺度作成と信頼性の検討
  8. 第8章 共分散構造分析――パス図の流れをつかむ
  9. 第9章 共分散構造分析を使いこなす――多母集団の同時解析とさまざまなパス図
  10. 第10章 カテゴリを扱う多変量解析――クラスタ分析・判別分析・ロジスティック回帰分析・コレスポンデンス分析

医学・保健学の例題による 統計学』 1982/10/1 豊川 裕之, 柳井晴夫 (編)

  • 豊川裕之 第1章 統計学を学ぶに当たって
  • 丸井英二 第2章 統計データと調査
  • 三宅由子 第3章 記述統計
  • 丸井英二 第4章 相関と回帰
  • 高木廣文 第5章 確率分布
  • 高木廣文 第6章 標本分布
  • 青木繁伸 第7章 検定と推定の考え方
  • 青木繁伸 第8章 検定と推定の実際
  • 柳井晴夫 第9章 実験計画法

本書は、推薦文の説明によると、東京大学医学部保健学科で実施されている統計・情報処理講義演習の内容を整理する形で纏められたものだそうです。図書館で借りて読みましたが、丁寧に書かれた教科書でした。統計の教科書は、数学音痴のためにことさらわかりやすさを強調したものが多いですが、この本はそういった最近よく見る本よりもむしろ説明が丁寧でわかりやすい印象を持ちました。

アウトカムが連続変数で、原因となっている因子の候補がカテゴリー変数(有か無か)で複数ある場合にどの因子の寄与が一番大きいのかを調べたい、そんなときにつかう多変量解析の手法が、「数量化I類」と呼ばれるものです。

多変量解析と一言でいっても条件によって選ぶべき手法は異なりますので、混同しないことが大事。要因(説明変数、独立変数)と結果(従属変数、目的変数)が、連続的な数なのかそれともカテゴリー変数なのかに着目すると、選ぶべき多変量解析の手法が自ずと定まります。

多変量解析の手法の選択基準

独立変数:連続量、従属変数:連続量なら、重回帰分析

独立変数:連続量、従属変数:カテゴリーなら、判別分析

独立変数:カテゴリー、従属変数:連続量なら、数量化I類

独立変数:カテゴリー、従属変数:カテゴリーなら、数量化II類

となります。

  1. 第4章多変量解析4.外的基準が分類の場合の分析方法(https://www.bunkyo.ac.jp/~hotta/lab/courses/2003seminar/ch4-4_5_hotta.pdf)
  2. 統計分析法の分類(https://www.educa.nagoya-u.ac.jp/~ishii-h/materials/analysis_methods.pdf)

数量化1類では、独立変数がカテゴリーですがそれをダミー変数に置き換えてしまうので、そうなるとあとは重回帰分析と全く同じということになります。ダミー変数というのは例えばアンケート調査項目で、リンゴの嗜好に関して好き、普通、嫌いという選択肢があった場合に、回答者の回答で該当するものを1、他を0といった具合に、一つだけ1にして後は0にしてしまうものです。ここで、「好き」、「普通」、「嫌い」はカテゴリー変数と呼ばれます。「リンゴの嗜好」という項目のことは、アイテムと呼ばれます。

 

判別分析とロジスティック回帰分析との違い

連続量⇒カテゴリー という流れでいうと、判別分析とロジスティック回帰分析は似ていますが、何が違うのでしょうか。

  1. プロテクター NANKAI SDP-C002 HEXA ハニカムD セパーレートチェスト CE 胸 分割式 CGL通信 vol39 「多変量解析の宝石学への応用」
  2. ロジスティック回帰 アイスタット ロジスティック回帰分析と似ている多変量解析に判別分析があります。‥ 両者の違いを調べてみます。

数量化I類を適用できる例数

  1. 多変量解析の手法別解説>数量化1類 アイスタット 個体数>カテゴリー総数-説明変数個数+1

数量化I類を適用する具体的な事例

多変量解析の手法別解説>数量化1類 アイスタット

目的変数:海外旅行回数

説明変数:性別(男性、女性)、年齢(若年、中年、高年)、血液型(A,B,O,AB) (カテゴリー総数=2+3+4=9、説明変数の個数=3)

目的変数:1日の新聞売り上げ部数

説明変数:曜日(月・火・水・木・金・土・日)、天候(晴・雨・小雨)、前日の野球の試合での巨人の勝敗(勝・負)、当日および前後の競馬の有無(有・無)

数量化1類 日経リサーチ

目的変数:立候補者の得票率

説明変数:政党(自民・民進・無所属)、職歴(元・現・新)、性別(男・女)

https://www.bunkyo.ac.jp/~hotta/lab/courses/2003seminar/ch4-3_huang.files/frame.htm

目的変数:英語の小テストの点

説明変数:英語が好きかどうかの質問

 

多変量解析の教科書

  1. 柳井 晴夫, 竹内 啓『射影行列・一般逆行列・特異値分解』(UP応用数学選書10 )新装版  2018/9/25  東京大学出版会 多変量解析の数学的な原理である線形代数を学ぶのに良さげな本。
  2. 足立 堅一『多変量解析入門』2005/12/20  ‎ 篠原出版新社 多変量解析の数学的な基盤である線形代数をわかりやすく解説した本。多変量解析への応用という強いモチベーションを持ちつつ、線形代数が学べるという点に特色があるのかも。
  3. 柳井晴夫『多変量データ解析法 理解と応用』(行動計量学シリーズ8)朝倉書店1994年12月5日定価3399円(本体3300円)図書館で借りて読みましたが、多変量解析の手法が網羅的に解説されています。数学的な根拠も説明されています。巻末の16ページに、本書で用いた線形代数の定理が簡潔にまとめられており、必要な数学を俯瞰できて便利。数量化I類の説明は103~105ページ
  4. 柳井 晴夫, 高根 芳雄『多変量解析法』 (現代人の統計) 新版 1985/6/1 朝倉書店
  5. 竹内啓, 柳井晴夫『多変量解析の基礎―線型空間への射影による方法』1972年 東洋経済新報社

新型コロナウイルス蔓延によるCOVID-19により世界の生活が全て一変してしまいましたが、最近興ってきた変異株オミクロンは病原性がデルタ株などよりも弱くて感染力は強いので、デルタ株などを駆逐して、COVID-19パンデミックを収束に向かわせるのではないかという期待感があるようです。

WASHINGTON (TND) — The World Health Organization is predicting the omicron variant could change the course of the pandemic. WHO Director-General Tedros Adhanom Ghebreyesus says the exact impact is “still difficult to know,” as recent reports suggest the variant appears to be less mild. “This actually is very encouraging news. The World Health Organization so far says there has not been one reported death from omicron in the world,” said Dr. Jeffrey Singer to The National Desk’s Jan Jeffcoat. “Since this appears to be four times more contagious than a delta variant, hopefully, this will crowd out the delta variant eventually.” Singer says COVID-19 could become nothing more than a recurring endemic cold. (Omicron variant could change COVID-19 to just a ‘recurring endemic cold,’ says doctor by ELISSA SALAMY, The National DeskFriday, December 10th 2021 thenationaldesk.com)

 

  1. オミクロン株は「終わりの始まり」説 コロナとの戦い、もうすぐ終了の期待 2021年12月10日20時10分 J-CASTトレンド  米ブルームバーグも同日、「オミクロンは感染力がこれまでの変異株よりも強い可能性がある一方、初期の報告によれば致死性は低いともみられる。これは歴史的に観察されたウイルスの進化パターンに合致している」「オミクロン株は新型コロナパンデミックの終焉(しゅうえん)が近いことを示唆している可能性がある」という米国大手証券会社の専門家の見方を伝えた。